235 resultados para Species Protection
Resumo:
After providing some brief background on Dendrolagus species in Australia, two consecutive surveys of Brisbane’s residents are used to assess public knowledge of tree-kangaroos and the stated degree of support for their conservation in Australia. The responses of participants in Survey I are based on their pre-survey knowledge of wildlife. The same additional set of participants completed Survey II after being provided with information on all the wildlife species mentioned in Survey I. Changes in the attitudes of respondents and their degree of support for the protection and conservation of Australia’s tree-kangaroos are measured, including changes in their contingent valuations and stated willingness to provide financial support for such conservation. Reasons for wanting to protect tree-kangaroos are specified and analyzed. Furthermore, changes that occur in the relative importance of these reasons with increased knowledge are also examined. Support for the conservation of tree-kangaroos is found to increase with the additional knowledge supplied. Furthermore, support for the conservation of Australia’s less well-known tropical mammals is shown to increase relative to better known mammals (icons) present in temperate areas, such as koalas and red kangaroos with this increased knowledge. Possible implications of the results for government conservation policies in Australia are examined.
Influences on knowledge of wildlife species on patterns of willingness to pay for their conservation
Resumo:
Examines the influence of respondents’ knowledge of wildlife species on their willingness to pay for conservation of the individual species. It does so by using data generated by surveys of 204 individuals who participated in a structured experiment in which their knowledge of a selected set of wildlife species was increased. The species selected were Australian ones, mostly but not entirely, tropical ones. The species were divided into three taxa for the experiment; reptiles, mammals and birds. Each set of species in the taxa included some species expected to be poorly known initially and some anticipated to be well known. Respondents rated their knowledge of each species on a Likert scale, and changes in their average allocation of funds for the conservation of each species were examined as their knowledge increased. Some general relationships are observed.
Resumo:
Conservation of biodiversity is a complex issue. Apart from the creation of nature reserves, there is a plethora of other factors that are part of this complex web. One such factor is the public knowledge of species. Since public funding is imperative for the conservation of species and creation of reserves for them it is important to determine the public’s awareness of species and their knowledge about them. In the absence of such awareness and knowledge, it is possible that the public may misallocate their support. In other words, resources may be provided for species that do not need support urgently. We show how availability of balanced information about species helps the public to make rational decisions and to allocate support (e.g. monetary) to species that need it most. Other implications of a ‘wildlife knowledgeable’ public are also discussed.
Resumo:
Using a species’ population to measure its conservation status, this note explores how an increase in knowledge about this status would change the public’s willingness to donate funds for its conservation. This is done on the basis that the relationship between the level of donations and a species’ conservation status satisfies stated general mathematical properties. This level of donation increases, on average, with greater knowledge of a species’ conservation status if it is endangered, but falls if it is secure. Game theory and other theory is used to show how exaggerating the degree of endangerment of a species can be counterproductive for conservation.
Resumo:
Environmental conditions play a significant role in the economic success of aquaculture. This article classifies environmental factors in a way that facilitates economic analysis of their implications for the selection of aquaculture species and systems. The implication of on-farm as on-site environmental conditions for this selection are considered first using profit-possibility frontiers and taking into account the biological law of environmental tolerance. However, in selecting, recommending and developing aquaculture species and systems, it is often unrealistic to assume the degree of managerial efficiency implied by the profit-possibility function. It is appropriate to take account of the degree of managerial inefficiency that actually exists, not all of which may be capable of being eliminated. Furthermore, experimental R&D should be geared to on-farm conditions, and the variability of these conditions needs to be taken into account. Particularly in shared water bodies, environmental spillovers between aquaculturalists can be important and as shown theoretically, can influence the socially optimal selection of aquaculture species and systems. Similarly, aquaculture can have environmental consequences for the rest of the community. The social economic implications of this for the selection of aquaculture species and systems are analyzed. Some paradoxical results are obtained. For example, if the quality of social governance of aquaculture is poor, aquaculture species and systems that cause a slow rate of environmental deterioration may be socially less satisfactory than those that cause a rapid rate of such deterioration. Socially optimal choice of aquaculture species and systems depends not only on their biophysical characteristics and market conditions but also on the prevailing state of governance of aquaculture. Failure to consider the last aspect can result in the introduction of new aquaculture species (and systems) doing more social harm than good.