118 resultados para Raja miraletus, Discontinuities, Transitional Speciation, nuDNA, mtDNA
Resumo:
A detailed study of the Goniopora reef profile at Dengloujiao, Xuwen County, Leizhou Peninsula, the northern coast of the South China Sea suggests that a series of high-frequency, large-amplitude and abrupt cold events occurred during the Holocene Hypsithermal, an unusual phenomenon termed Leizhou Events in this paper. This period (corresponding to C-14 age of 6.2 -6.7 kaBP or calendar age of 6.7-7.2 kaBP), when the climatic conditions were ideal for coral. reefs to develop, can be divided into at least nine stages. Each stage (or called a climate optimum), lasting about 20 to 50 a, was terminated by an abrupt cold nap and (or) a sea-level lowering event in winter, leading to widespread emergence and death of the Goniopora corals, and growth discontinuities on the coral surface. Such a cyclic process resulted in the creation of a > 4m thick Goniopora reef flat. During this period, the crust subsided periodically but the sea level was rising. The reef profile provides valuable archives for the study of decadal-scale mid-Holocene climatic oscillations in the tropical area of South China. Our results provide new evidence for high-frequency climate instability in the Holocene Hypsithermal, and challenge the traditional understanding of Holocene climate.
Resumo:
The age of sex reversal of the venus tusk fish Choerodon venustus, caught by line fishing at various locations on the southern Great Barrier Reef, indicated that C. venustus is capable of modifying its life cycle in response to increased mortality. The evidence suggests Masthead Reef fish, which experience the highest mortality, underwent sex reversal at a smaller size and younger age than at the other sites. The largest female fish, sexually transitional fish and males were smaller at Masthead Reef than at the Swains Reefs or One Tree Reef at Masthead Reef. There was also considerable overlap in the size of males and females within the exploited populations indicating that sex reversal is not initiated at a particular length but may have a social cause. The sex ratio of fish was essentially the same for fish fully susceptible to line fishing in the Swains and Masthead samples. Circumstantial evidence suggested that the absence of large males in a population may initiate sex reversal, indicating the maintenance of a constant sex ratio may have a social basis. (C) 2002 The Fisheries Society of the British Isles.
Resumo:
What causes species richness to vary among different groups of organisms? Two hypotheses are that large geographical ranges and fast life history either reduce extinction rates or raise speciation rates, elevating a clade's rate of diversification. Here we present a comparative analysis of these hypotheses using data on the phylogenetic relationships, geographical ranges and life history of the terrestrial mammal fauna of Australia. By comparing species richness patterns to null models, we show that species are distributed nonrandomly among genera. Using sister-clade comparisons to control for clade age, we then find that faster diversification is significantly associated with larger geographical ranges and larger litters, but there is no evidence for an effect of body size or age at first breeding on diversification rates. We believe the most likely explanation for these patterns is that larger litters and geographical ranges increase diversification rates because they buffer species from extinction. We also discuss the possibility that positive effects of litter size and range size on diversification rates result from elevated speciation rates.
Resumo:
Semi-aquatic animals represent a transitional locomotor condition characterised by the possession of morphological features that allow locomotion both in water and on land. Most ecologically important behaviours of crocodilians occur in the water, raising the question of whether their 'terrestrial construction' constrains aquatic locomotion. Moreover, the demands for aquatic locomotion change with life-history stage. It was the aim of this research to determine the kinematic characteristics and efficiency of aquatic locomotion in different-sized crocodiles (Crocodylus porosus). Aquatic propulsion was achieved primarily by tail undulations, and the use of limbs during swimming was observed only in very small animals or at low swimming velocities in larger animals. Over the range of swimming speeds we examined, tail beat amplitude did not change with increasing velocity, but amplitude increased significantly with body length. However, amplitude expressed relative to body length decreased with increasing body length. Tail beat frequency increased with swimming velocity but there were no differences in frequency between different-sized animals. Mechanical power generated during swimming and thrust increased non-linearly with swimming velocity, but disproportionally so that kinematic efficiency decreased with increasing swimming velocity. The importance of unsteady forces, expressed as the reduced frequency, increased with increasing swimming velocity. Amplitude is the main determinant of body-size-related increases in swimming velocity but, compared with aquatic mammals and fish, crocodiles are slow swimmers probably because of constraints imposed by muscle performance and unsteady forces opposing forward movement. Nonetheless, the kinematic efficiency of aquatic locomotion in crocodiles is comparable to that of fully aquatic mammals, and it is considerably greater than that of semi-aquatic mammals.
Resumo:
Why does species richness vary so greatly across lineages? Traditionally, variation in species richness has been attributed to deterministic processes, although it is equally plausible that it may result from purely stochastic processes. We show that, based on the best available phylogenetic hypothesis, the pattern of cladogenesis among agamid lizards is not consistent with a random model, with some lineages having more species, and others fewer species, than expected by chance. We then use phylogenetic comparative methods to test six types of deterministic explanation for variation in species richness: body size, life history, sexual selection, ecological generalism, range size and latitude. Of eight variables we tested, only sexual size dimorphism and sexual dichromatism predicted species richness. Increases in species richness are associated with increases in sexual dichromatism but reductions in sexual size dimorphism. Consistent with recent comparative studies, we find no evidence that species richness is associated with small body size or high fecundity. Equally, we find no evidence that species richness covaries with ecological generalism, latitude or range size.
Resumo:
Numerous hypotheses have been proposed to explain latitudinal gradients in species richness, but all are subject to ongoing debate. Here we examine Rohde's (1978, 1992) hypothesis, which proposes that climatic conditions at low latitudes lead to elevated rates of speciation. This hypothesis predicts that rates of molecular evolution should increase towards lower latitudes, but this prediction has never been tested. We discuss potential links between rates of molecular evolution and latitudinal diversity gradients, and present the first test of latitudinal variation in rates of molecular evolution. Using 45 phylogenetically independent, latitudinally separated pairs of bird species and higher taxa, we compare rates of evolution of two mitochondrial genes and DNA-DNA hybridization distances. We find no support for an effect of latitude on rate of molecular evolution. This result casts doubt on the generality of a key component of Rohde's hypothesis linking climate and speciation.
Resumo:
We assayed mtDNA haplotype [300 base pairs (bp) control region] geography and genealogy in the Indo-Pacific tasselfish, Polynemus sheridani from its contiguous estuarine distribution across northern Australia (n = 169). Eight estuaries were sampled from three oceanographic regions (Timor Sea, Gulf of Carpentaria and the Coral Sea) to assess the impact of Pleistocene sea level changes on the historical connectivity among P. sheridani populations. Specifically, we investigated the genetic consequences of disruption to Indian-Pacific Ocean connectivity brought about by the closure of the Torres Strait. Overall there was significant population subdivision among estuaries (F-ST = 0.161, (Phi(ST) = 0.187). Despite a linear distribution, P. sheridani did not show isolation by distance over the entire sampled range because of genetic similarity of estuaries greater than 3000 km apart. However, significant isolation by distance was detected between estuaries separated by less than 3000 km of coastline. Unlike many genetic studies of Indo-Pacific marine species, there was no evidence for an historical division between eastern and western populations. Instead, phylogeographical patterns were dominated by a starlike intraspecific phylogeny coupled with evidence for population expansion in both the Gulf of Carpentaria and the Coral Sea but not the Timor Sea. This was interpreted as evidence for recent west to east recolonization across of northern Australia following the last postglacial marine advance. We argue that although sufficient time has elapsed postcolonization for populations to approach gene flow-drift equilibrium over smaller spatial scales (< 3000 km), the signal of historical colonization persists to obscure the expected equilibrium pattern of isolation by distance over large spatial scales (> 3000 km).
Resumo:
Skin-friction measurements are reported for high-enthalpy and high-Mach-number laminar, transitional and turbulent boundary layers. The measurements were performed in a free-piston shock tunnel with air-flow Mach number, stagnation enthalpy and Reynolds numbers in the ranges of 4.4-6.7, 3-13 MJ kg(-1) and 0.16 x 10(6)-21 x 10(6), respectively. Wall temperatures were near 300 K and this resulted in ratios of wall enthalpy to flow-stagnation enthalpy in the range of 0.1-0.02. The experiments were performed using rectangular ducts. The measurements were accomplished using a new skin-friction gauge that was developed for impulse facility testing. The gauge was an acceleration compensated piezoelectric transducer and had a lowest natural frequency near 40 kHz. Turbulent skin-friction levels were measured to within a typical uncertainty of +/-7%. The systematic uncertainty in measured skin-friction coefficient was high for the tested laminar conditions; however, to within experimental uncertainty, the skin-friction and heat-transfer measurements were in agreement with the laminar theory of van Driest (1952). For predicting turbulent skin-friction coefficient, it was established that, for the range of Mach numbers and Reynolds numbers of the experiments, with cold walls and boundary layers approaching the turbulent equilibrium state, the Spalding & Chi (1964) method was the most suitable of the theories tested. It was also established that if the heat transfer rate to the wall is to be predicted, then the Spalding & Chi (1964) method should be used in conjunction with a Reynolds analogy factor near unity. If more accurate results are required, then an experimentally observed relationship between the Reynolds analogy factor and the skin-friction coefficient may be applied.
Resumo:
To help understand the mechanisms of gene rearrangement in the mitochondrial (mt) genomes of hemipteroid insects, we sequenced the mt genome of the plague thrips, Thrips imaginis (Thysanoptera). This genome is circular, 15,407 by long, and has many unusual features, including (1) rRNA genes inverted and distant from one another, (2) an extra gene for tRNA-Ser, (3) a tRNA-Val lacking a D-arm, (4) two pseudo-tRNA genes, (5) duplicate control regions, and (6) translocations and/or inversions of 24 of the 37 genes. The mechanism of rRNA gene transcription in T. imaginis may be different from that of other arthropods since the two rRNA genes have inverted and are distant from one another. Further, the rRNA genes are not adjacent or even close to either of the two control regions. Tandem duplication and deletion is a plausible model for the evolution of duplicate control regions and for the gene translocations, but intramitochondrial recombination may account for the gene inversions in T. imaginis. All the 18 genes between control regions #1 and #2 have translocated and/or inverted, whereas only six of the 20 genes outside this region have translocated and/or inverted. Moreover, the extra tRNA gene and the two pseudo-tRNA genes are either in this region or immediately adjacent to one of the control regions. These observations suggest that tandem duplication and deletion may be facilitated by the duplicate control regions and may have occurred a number of times in the lineage leading to T. imaginis. T. imaginis shares two novel gene boundaries with a lepidopsocid species from another order of hemipteroid insects, the Psocoptera. The evidence available suggests that these shared gene boundaries evolved by convergence and thus are not informative for the interordinal phylogeny of hemipteroid insects. We discuss the potential of hemipteroid insects as a model system for studies of the evolution of animal rut genomes and outline some fundamental questions that may be addressed with this system.
Resumo:
A number of studies indicated that lineages of animals with high rates of mitochondrial (mt) gene rearrangement might have high rates of mt nucleotide substitution. We chose the hemipteroid assemblage and the Insecta to test the idea that rates of mt gene rearrangement and mt nucleotide substitution are correlated. For this purpose, we sequenced the mt genome of a lepidopsocid from the Psocoptera, the only order of hemipteroid insects for which an entire mtDNA sequence is not available. The mt genome of this lepidopsocid is circular, 16,924 bp long, and contains 37 genes and a putative control region; seven tRNA genes and a protein-coding gene in this genome have changed positions relative to the ancestral arrangement of mt genes of insects. We then compared the relative rates of nucleotide substitution among species from each of the four orders of hemipteroid insects and among the 20 insects whose mt genomes have been sequenced entirely. All comparisons among the hernipteroid insects showed that species with higher rates of gene rearrangement also had significantly higher rates of nucleotide substitution statistically than did species with lower rates of gene rearrangement. In comparisons among the 20 insects, where the mt genomes of the two species differed by more than five breakpoints, the more rearranged species always had a significantly higher rate of nucleotide substitution than the less rearranged species. However, in comparisons where the mt genomes of two species differed by five or less breakpoints, the more rearranged species did not always have a significantly higher rate of nucleotide substitution than the less rearranged species. We tested the statistical significance of the correlation between the rates of mt gene rearrangement and mt nucleotide substitution with nine pairs of insects that were phylogenetically independent from one 2 another. We found that the correlation was positive and statistically significant (R-2 = 0.73, P = 0.01; R-s = 0.67, P < 0.05). We propose that increased rates of nucleotide substitution may lead to increased rates of gene rearrangement in the mt genomes of insects.
Resumo:
There has been a resurgence of interest in the mean trace length estimator of Pahl for window sampling of traces. The estimator has been dealt with by Mauldon and Zhang and Einstein in recent publications. The estimator is a very useful one in that it is non-parametric. However, despite some discussion regarding the statistical distribution of the estimator, none of the recent works or the original work by Pahl provide a rigorous basis for the determination a confidence interval for the estimator or a confidence region for the estimator and the corresponding estimator of trace spatial intensity in the sampling window. This paper shows, by consideration of a simplified version of the problem but without loss of generality, that the estimator is in fact the maximum likelihood estimator (MLE) and that it can be considered essentially unbiased. As the MLE, it possesses the least variance of all estimators and confidence intervals or regions should therefore be available through application of classical ML theory. It is shown that valid confidence intervals can in fact be determined. The results of the work and the calculations of the confidence intervals are illustrated by example. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
With recent advances in molecular biology, it is now possible to use the trace amounts of DNA in faeces to non-invasively sample endangered species for genetic studies. A highly vulnerable population of approximately 100 great bustards (Otis tarda) exists in Morocco necessitating the use of non-invasive protocols to study their genetic structure. Here we report a reliable silica-based method to extract DNA from great bustard faeces. We found that successful extraction and amplification correlated strongly with faeces freshness and composition. We could not extract amplifiable DNA from 30% of our samples as they were dry or contained insect material. However 100% of our fresh faecal samples containing no obvious insect material worked, allowing us to assess the levels of genetic variation among 25 individuals using a 542 bp control region sequence. We were able to extract DNA from four out of five other avian species, demonstrating that faeces represents a suitable source of DNA for population genetics studies in a broad range of species.
Resumo:
Arsenic is a carcinogen to both humans and animals. Arsenicals have been associated with cancers of the skin, lung, and bladder. Clinical manifestations of chronic arsenic poisoning include non-cancer end point of hyper- and hypo-pigmentation, keratosis, hypertension, cardiovascular diseases and diabetes. Epidemiological evidence indicates that arsenic concentration exceeding 50 mug l(-1) in the drinking water is not public health protective. The current WHO recommended guideline value for arsenic in drinking water is 10 mug l(-1), whereas many developing countries are still having a value of 50 mug 1(-1). It has been estimated that tens of millions of people are. at risk exposing to excessive levels of arsenic from both contaminated water and arsenic-bearing coal from natural sources. The global health implication and possible intervention strategies were also discussed in this review article. (C) 2003 Elsevier Ltd. All rights reserved.