276 resultados para Quantum Dynamics
Resumo:
The transient statistics of a gain-switched coherently pumped class-C laser displays a linear correlation between the first passage time and subsequent peak intensity. Measurements are reported showing a positive or negative sign of this linear correlation, controlled through the switching time and the laser detuning. Further measurements of the small-signal laser gain combined with calculations involving a three-level laser model indicate that this sign fundamentally depends upon the way the laser inversion varies during the gain switching, despite the added dynamics of the laser polarization in the class-C laser. [S1050-2947(97)07112-6].
Resumo:
Enhancement of interdiffusion in GaAs/AlGaAs quantum wells due to anodic oxides was studied. Photoluminescence, transmission electron microscopy, and quantum well modeling were used to understand the effects of intermixing on the quantum well shape. Residual water in the oxide was found to increase the intermixing, though it was not the prime cause for intermixing. Injection of defects such as group III vacancies or interstitials was considered to be a driving force for the intermixing. Different current densities used in the experimental range to create anodic oxides had little effect on the intermixing. ©1998 American Institute of Physics.
Resumo:
Using Reshetikhin's construction for multiparametric quantum algebras we obtain the associated multiparametric quantum spin chains. We show that under certain restrictions these models can be mapped to quantum spin chains with twisted boundary conditions, We illustrate how this general formalism applier; to construct multiparametric versions of the supersymmetric t-J and Li models.
Resumo:
Spin glasses are magnetic systems with conflicting and random interactions between the individual spins. The dynamics of spin glasses, as of structural glasses, reflect their complexity. Both in experimental and numerical work the relaxation below the freezing temperature depends strongly on the annealing conditions (aging) and, above the freezing point, relaxation in equilibrium is slow and non-exponential, In this Forum, observed characteristics of the dynamics were summarized and the physical models proposed to explain them were outlined. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
The structure constants of quantum Lie algebras depend on a quantum deformation parameter q and they reduce to the classical structure constants of a Lie algebra at q = 1. We explain the relationship between the structure constants of quantum Lie algebras and quantum Clebsch-Gordan coefficients for adjoint x adjoint --> adjoint We present a practical method for the determination of these quantum Clebsch-Gordan coefficients and are thus able to give explicit expressions for the structure constants of the quantum Lie algebras associated to the classical Lie algebras B-l, C-l and D-l. In the quantum case the structure constants of the Cartan subalgebra are non-zero and we observe that they are determined in terms of the simple quantum roots. We introduce an invariant Killing form on the quantum Lie algebras and find that it takes values which are simple q-deformations of the classical ones.
Resumo:
We demonstrate a contradiction of quantum mechanics with local hidden variable theories for continuous quadrature phase amplitude (position and momentum) measurements. For any quantum state, this contradiction is lost for situations where the quadrature phase amplitude results are always macroscopically distinct. We show that for optical realizations of this experiment, where one uses homodyne detection techniques to perform the quadrature phase amplitude measurement, one has an amplification prior to detection, so that macroscopic fields are incident on photodiode detectors. The high efficiencies of such detectors may open a way for a loophole-free test of local hidden variable theories.
Resumo:
We review the description of noise in electronic circuits in terms of electron transport. The Poisson process is used as a unifying principle. In recent years, much attention has been given to current noise in light-emitting diodes and laser diodes. In these devices, random events associated with electron transport are correlated with photon emission times, thus modifying both the current statistics and the statistics of the emitted light. We give a review of experiments in this area with special emphasis on the ability of such devices to produce subshot-noise currents and light beams. Finally we consider the noise properties of a class of mesoscopic devices based on the quantum tunnelling of an electron into and out of a bound state. We present a simple quantum model of this process which confirms that the current noise in such a device should be subshot-noise.
Resumo:
Algorithms for explicit integration of structural dynamics problems with multiple time steps (subcycling) are investigated. Only one such algorithm, due to Smolinski and Sleith has proved to be stable in a classical sense. A simplified version of this algorithm that retains its stability is presented. However, as with the original version, it can be shown to sacrifice accuracy to achieve stability. Another algorithm in use is shown to be only statistically stable, in that a probability of stability can be assigned if appropriate time step limits are observed. This probability improves rapidly with the number of degrees of freedom in a finite element model. The stability problems are shown to be a property of the central difference method itself, which is modified to give the subcycling algorithm. A related problem is shown to arise when a constraint equation in time is introduced into a time-continuous space-time finite element model. (C) 1998 Elsevier Science S.A.
Resumo:
The nutrient contents and accessions in litterfall over a period of 3 y are reported for undisturbed areas and at two sites disturbed by selective harvesting in tropical rain forest in North Queensland, Australia. Mean concentrations (mg g(-1) dry weight) of nutrients in litterfall ranged from 10 to 12 for nitrogen; 0.33 to 0.43 for phosphorus; 3.6 to 4.3 for potassium; 6.0 to 10.5 for calcium and 1.7 to 2.6 for magnesium. These concentrations are in the middle to lower part of the spectrum of values recorded for tropical forest. Accessions of nutrients in litterfall (kg ha(-1) y(-1)) ranged from 59 to 64 N; 1.9 to 2.4 P; 20 to 24K; 34 to 63 Ca; and 9 to 16 Mg. These rates, particularly for IN and P, are among the lowest recorded for tropical forests. There were no consistent between-site differences in total nutrient accessions in small litterfall. In terms of the contribution of litterfall to the accessions of nutrients to the forest floor, this suggests that the logged sites have recovered from the effects of selective harvesting within 25 y. Nutrient accessions at each site were distinctly seasonal, with maximum accessions occurring in the late dry season to late in the wet season. Leaf-fall accounted for the largest proportion of nutrient accessions over the study period, although at certain times accessions in both reproductive material and wood were significant. A cyclone which crossed the coast near the study sites resulted in large nutrient accessions over a short period but had little effect on the total annual accession. A comparison with previous studies of litterfall in Australian tropical rainforests indicates that nutrient return in litterfall is directly related to soil fertility.
Resumo:
We clarify the extra signs appearing in the graded quantum Yang-Baxter reflection equations, when they are written in a matrix form. We find the boundary K-matrix for the Perk-Schultz six-vertex model, thus give a general solution to the graded reflection equation associated with it.
Resumo:
We show how an initially prepared quantum state of a radiation mode in a cavity can be preserved for a long time using a feedback scheme based on the injection of appropriately prepared atoms. We present a feedback scheme both for optical cavities, which can be continuously monitored by a photodetector, and for microwave cavities, which can be monitored only indirectly via the detection of atoms that have interacted with the cavity field. We also discuss the possibility of applying these methods for decoherence control in quantum information processing.
Resumo:
We investigate in detail the effects of a QND vibrational number measurement made on single ions in a recently proposed measurement scheme for the vibrational state of a register of ions in a linear rf trap [C. D'HELON and G. J. MILBURN, Phys Rev. A 54, 5141 (1996)]. The performance of a measurement shows some interesting patterns which are closely related to searching.
Resumo:
A new two-parameter integrable model with quantum superalgebra U-q[gl(3/1)] symmetry is proposed, which is an eight-state fermions model with correlated single-particle and pair hoppings as well as uncorrelated triple-particle hopping. The model is solved and the Bethe ansatz equations are obtained.