190 resultados para Physics, Mathematical


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ergodic hypothesis asserts that a classical mechanical system will in time visit every available configuration in phase space. Thus, for an ergodic system, an ensemble average of a thermodynamic quantity can equally well be calculated by a time average over a sufficiently long period of dynamical evolution. In this paper, we describe in detail how to calculate the temperature and chemical potential from the dynamics of a microcanonical classical field, using the particular example of the classical modes of a Bose-condensed gas. The accurate determination of these thermodynamics quantities is essential in measuring the shift of the critical temperature of a Bose gas due to nonperturbative many-body effects.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Drinfeld twist for the opposite quasi-Hopf algebra, H-COP, is determined and is shown to be related to the (second) Drinfeld twist on a quasi-Hopf algebra. The twisted form of the Drinfeld twist is investigated. In the quasi-triangular case, it is shown that the Drinfeld u-operator arises from the equivalence of H-COP to the quasi-Hopf algebra induced by twisting H with the R-matrix. The Altschuler-Coste u-operator arises in a similar way and is shown to be closely related to the Drinfeld u-operator. The quasi-cocycle condition is introduced and is shown to play a central role in the uniqueness of twisted structures on quasi-Hopf algebras. A generalization of the dynamical quantum Yang-Baxter equation, called the quasi-dynamical quantum Yang-Baxter equation, is introduced.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Arguably the deepest fact known about the von Neumann entropy, the strong subadditivity inequality is a potent hammer in the quantum information theorist's toolkit. This short tutorial describes a simple proof of strong subadditivity due to Petz [Rep. on Math. Phys. 23 (1), 57-65 (1986)]. It assumes only knowledge of elementary linear algebra and quantum mechanics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An algorithm for suppressing the chaotic oscillations in non-linear dynamical systems with singular Jacobian matrices is developed using a linear feedback control law based upon the Lyapunov-Krasovskii (LK) method. It appears that the LK method can serve effectively as a generalised method for the suppression of chaotic oscillations for a wide range of systems. Based on this method, the resulting conditions for undisturbed motions to be locally or globally stable are sufficient and conservative. The generalized Lorenz system and disturbed gyrostat equations are exemplified for the validation of the proposed feedback control rule. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

What is the minimal size quantum circuit required to exactly implement a specified n-qubit unitary operation, U, without the use of ancilla qubits? We show that a lower bound on the minimal size is provided by the length of the minimal geodesic between U and the identity, I, where length is defined by a suitable Finsler metric on the manifold SU(2(n)). The geodesic curves on these manifolds have the striking property that once an initial position and velocity are set, the remainder of the geodesic is completely determined by a second order differential equation known as the geodesic equation. This is in contrast with the usual case in circuit design, either classical or quantum, where being given part of an optimal circuit does not obviously assist in the design of the rest of the circuit. Geodesic analysis thus offers a potentially powerful approach to the problem of proving quantum circuit lower bounds. In this paper we construct several Finsler metrics whose minimal length geodesics provide lower bounds on quantum circuit size. For each Finsler metric we give a procedure to compute the corresponding geodesic equation. We also construct a large class of solutions to the geodesic equation, which we call Pauli geodesics, since they arise from isometries generated by the Pauli group. For any unitary U diagonal in the computational basis, we show that: (a) provided the minimal length geodesic is unique, it must be a Pauli geodesic; (b) finding the length of the minimal Pauli geodesic passing from I to U is equivalent to solving an exponential size instance of the closest vector in a lattice problem (CVP); and (c) all but a doubly exponentially small fraction of such unitaries have minimal Pauli geodesics of exponential length.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Statistics is known to be an art as well as a science. The training of mathematical physicists predisposes them towards hypothesising plausible Bayesean priors. Tony Bracken and I were of that mind [1], but in our discussions we also recognised the Bayesean will-o'-the-wisp illustrated below.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This article is a short introduction to and review of the cluster-state model of quantum computation, in which coherent quantum information processing is accomplished via a sequence of single-qubit measurements applied to a fixed quantum state known as a cluster state. We also discuss a few novel properties of the model, including a proof that the cluster state cannot occur as the exact ground state of any naturally occurring physical system, and a proof that measurements on any quantum state which is linearly prepared in one dimension can be efficiently simulated on a classical computer, and thus are not candidates for use as a substrate for quantum computation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Complex numbers appear in the Hilbert space formulation of quantum mechanics, but not in the formulation in phase space. Quantum symmetries are described by complex, unitary or antiunitary operators defining ray representations in Hilbert space, whereas in phase space they are described by real, true representations. Equivalence of the formulations requires that the former representations can be obtained from the latter and vice versa. Examples are given. Equivalence of the two formulations also requires that complex superpositions of state vectors can be described in the phase space formulation, and it is shown that this leads to a nonlinear superposition principle for orthogonal, pure-state Wigner functions. It is concluded that the use of complex numbers in quantum mechanics can be regarded as a computational device to simplify calculations, as in all other applications of mathematics to physical phenomena.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Working in the F-basis provided by the factorizing F-matrix, the scalar products of Bethe states for the supersymmetric t-J model are represented by determinants. By means of these results, we obtain determinant representations of correlation functions for the model.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We construct the Drinfeld twists (or factorizing F-matrices) of the supersymmetric model associated with quantum superalgebra U-q(gl(m vertical bar n)), and obtain the completely symmetric representations of the creation operators of the model in the F-basis provided by the F-matrix. As an application of our general results, we present the explicit expressions of the Bethe vectors in the F-basis for the U-q(gl(2 vertical bar 1))-model (the quantum t-J model).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

First principles simulations of the quantum dynamics of interacting Bose gases using the stochastic gauge representation are analysed. In a companion paper, we showed how the positive-P representation can be applied to these problems using stochastic differential equations. That method, however, is limited by increased sampling error as time evolves. Here, we show how the sampling error can be greatly reduced and the simulation time significantly extended using stochastic gauges. In particular, local stochastic gauges (a subset) are investigated. Improvements are confirmed in numerical calculations of single-, double- and multi-mode systems in the weak-mode coupling regime. Convergence issues are investigated, including the recognition of two modes by which stochastic equations produced by phase-space methods in general can diverge: movable singularities and a noise-weight relationship. The example calculated here displays wave-like behaviour in spatial correlation functions propagating in a uniform 1D gas after a sudden change in the coupling constant. This could in principle be tested experimentally using Feshbach resonance methods.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The performance of the positive P phase-space representation for exact many- body quantum dynamics is investigated. Gases of interacting bosons are considered, where the full quantum equations to simulate are of a Gross-Pitaevskii form with added Gaussian noise. This method gives tractable simulations of many-body systems because the number of variables scales linearly with the spatial lattice size. An expression for the useful simulation time is obtained, and checked in numerical simulations. The dynamics of first-, second- and third-order spatial correlations are calculated for a uniform interacting 1D Bose gas subjected to a change in scattering length. Propagation of correlations is seen. A comparison is made with other recent methods. The positive P method is particularly well suited to open systems as no conservation laws are hard-wired into the calculation. It also differs from most other recent approaches in that there is no truncation of any kind.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We formulate a general multi-mode Gaussian operator basis for fermions, to enable a positive phase-space representation of correlated Fermi states. The Gaussian basis extends existing bosonic phase-space methods to Fermi systems and thus allows first-principles dynamical or equilibrium calculations in quantum many-body Fermi systems. We prove the completeness of the basis and derive differential forms for products with one- and two-body operators. Because the basis satisfies fermionic superselection rules, the resulting phase space involves only c-numbers, without requiring anticommuting Grassmann variables. Furthermore, because of the overcompleteness of the basis, the phase-space distribution can always be chosen positive. This has important consequences for the sign problem in fermion physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We review the recent progress on the construction of the determinant representations of the correlation functions for the integrable supersymmetric fermion models. The factorizing F-matrices (or the so-called F-basis) play an important role in the construction. In the F-basis, the creation (and the annihilation) operators and the Bethe states of the integrable models are given in completely symmetric forms. This leads to the determinant representations of the scalar products of the Bethe states for the models. Based on the scalar products, the determinant representations of the correlation functions may be obtained. As an example, in this review, we give the determinant representations of the two-point correlation function for the U-q(gl(2 vertical bar 1)) (i.e. q-deformed) supersymmetric t-J model. The determinant representations are useful for analyzing physical properties of the integrable models in the thermodynamical limit.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using an elementary example based on two simple harmonic oscillators, we show how a relational time may be defined that leads to an approximate Schrodinger dynamics for subsystems, with corrections leading to an intrinsic decoherence in the energy eigenstates of the subsystem.