123 resultados para Object-oriented methods (Computer science)
Resumo:
Existing refinement calculi provide frameworks for the stepwise development of imperative programs from specifications. This paper presents a refinement calculus for deriving logic programs. The calculus contains a wide-spectrum logic programming language, including executable constructs such as sequential conjunction, disjunction, and existential quantification, as well as specification constructs such as general predicates, assumptions and universal quantification. A declarative semantics is defined for this wide-spectrum language based on executions. Executions are partial functions from states to states, where a state is represented as a set of bindings. The semantics is used to define the meaning of programs and specifications, including parameters and recursion. To complete the calculus, a notion of correctness-preserving refinement over programs in the wide-spectrum language is defined and refinement laws for developing programs are introduced. The refinement calculus is illustrated using example derivations and prototype tool support is discussed.
Resumo:
We present a novel maximum-likelihood-based algorithm for estimating the distribution of alignment scores from the scores of unrelated sequences in a database search. Using a new method for measuring the accuracy of p-values, we show that our maximum-likelihood-based algorithm is more accurate than existing regression-based and lookup table methods. We explore a more sophisticated way of modeling and estimating the score distributions (using a two-component mixture model and expectation maximization), but conclude that this does not improve significantly over simply ignoring scores with small E-values during estimation. Finally, we measure the classification accuracy of p-values estimated in different ways and observe that inaccurate p-values can, somewhat paradoxically, lead to higher classification accuracy. We explain this paradox and argue that statistical accuracy, not classification accuracy, should be the primary criterion in comparisons of similarity search methods that return p-values that adjust for target sequence length.
Resumo:
Combinatorial optimization problems share an interesting property with spin glass systems in that their state spaces can exhibit ultrametric structure. We use sampling methods to analyse the error surfaces of feedforward multi-layer perceptron neural networks learning encoder problems. The third order statistics of these points of attraction are examined and found to be arranged in a highly ultrametric way. This is a unique result for a finite, continuous parameter space. The implications of this result are discussed.
Resumo:
Program compilation can be formally defined as a sequence of equivalence-preserving transformations, or refinements, from high-level language programs to assembler code, Recent models also incorporate timing properties, but the resulting formalisms are intimidatingly complex. Here we take advantage of a new, simple model of real-time refinement, based on predicate transformer semantics, to present a straightforward compilation formalism that incorporates real-time constraints. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
We introduce a model of computation based on read only memory (ROM), which allows us to compare the space-efficiency of reversible, error-free classical computation with reversible, error-free quantum computation. We show that a ROM-based quantum computer with one writable qubit is universal, whilst two writable bits are required for a universal classical ROM-based computer. We also comment on the time-efficiency advantages of quantum computation within this model.
Resumo:
TROST. S. G., R. R. PATE, J. F. SALLIS, P. S. FREEDSON, W. C. TAYLOR, M. DOWDA, and J. SIRARD. Age and gender differences in objectively measured physical activity in youth. Med. Sci. Sports Ererc., Vol. 34, No. 2, pp. 350-355, 2002. Purpose: The purpose of this study was to evaluate age and gender differences in objectively measured physical activity (PA) in a population-based sample of students in grades 1-12. Methods: Participants (185 male, 190 female) wore a CSA 7164 accelerometer for 7 consecutive days. To examine age-related trends. students were grouped as follows: grades 1-3 (N = 90), grades 4-6 (N = 91), grades 7-9 (N = 96). and grades 10-12 (N = 92). Bouts of PA and minutes spent in moderate-to-vigorous PA (MVPA) and vigorous PA (VPA) were examined. Results: Daily MVPA and VPA exhibited a significant inverse relationship with grade level, with the largest differences occurring between grades 1d-3 and 4-6. Boys were more active than girls; however, for overall PA, the magnitudes of the gender differences were modest. Participation in continuous 20-min bouts of PA was low to nonexistent. Conclusion: Our results support the notion that PA declines rapidly during childhood and adolescence and that accelerometers are feasible alternatives to self-report methods in moderately sized population-level surveillance studies.
Resumo:
We study partitions of the set of all ((v)(3)) triples chosen from a v-set into pairwise disjoint planes with three points per line. Our partitions may contain copies of PG(2, 2) only (Fano partitions) or copies of AG(2, 3) only (affine partitions) or copies of some planes of each type (mixed partitions). We find necessary conditions for Fano or affine partitions to exist. Such partitions are already known in several cases: Fano partitions for v = 8 and affine partitions for v = 9 or 10. We construct such partitions for several sporadic orders, namely, Fano partitions for v = 14, 16, 22, 23, 28, and an affine partition for v = 18. Using these as starter partitions, we prove that Fano partitions exist for v = 7(n) + 1, 13(n) + 1, 27(n) + 1, and affine partitions for v = 8(n) + 1, 9(n) + 1, 17(n) + 1. In particular, both Fano and affine partitions exist for v = 3(6n) + 1. Using properties of 3-wise balanced designs, we extend these results to show that affine partitions also exist for v = 3(2n). Similarly, mixed partitions are shown to exist for v = 8(n), 9(n), 11(n) + 1.
Resumo:
A central problem in visual perception concerns how humans perceive stable and uniform object colors despite variable lighting conditions (i.e. color constancy). One solution is to 'discount' variations in lighting across object surfaces by encoding color contrasts, and utilize this information to 'fill in' properties of the entire object surface. Implicit in this solution is the caveat that the color contrasts defining object boundaries must be distinguished from the spurious color fringes that occur naturally along luminance-defined edges in the retinal image (i.e. optical chromatic aberration). In the present paper, we propose that the neural machinery underlying color constancy is complemented by an 'error-correction' procedure which compensates for chromatic aberration, and suggest that error-correction may be linked functionally to the experimentally induced illusory colored aftereffects known as McCollough effects (MEs). To test these proposals, we develop a neural network model which incorporates many of the receptive-field (RF) profiles of neurons in primate color vision. The model is composed of two parallel processing streams which encode complementary sets of stimulus features: one stream encodes color contrasts to facilitate filling-in and color constancy; the other stream selectively encodes (spurious) color fringes at luminance boundaries, and learns to inhibit the filling-in of these colors within the first stream. Computer simulations of the model illustrate how complementary color-spatial interactions between error-correction and filling-in operations (a) facilitate color constancy, (b) reveal functional links between color constancy and the ME, and (c) reconcile previously reported anomalies in the local (edge) and global (spreading) properties of the ME. We discuss the broader implications of these findings by considering the complementary functional roles performed by RFs mediating color-spatial interactions in the primate visual system. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The long short-term memory (LSTM) is not the only neural network which learns a context sensitive language. Second-order sequential cascaded networks (SCNs) are able to induce means from a finite fragment of a context-sensitive language for processing strings outside the training set. The dynamical behavior of the SCN is qualitatively distinct from that observed in LSTM networks. Differences in performance and dynamics are discussed.
Resumo:
A soft linguistic evaluation method is proposed for the environmental assessment of physical infrastructure projects based on fuzzy relations. Infrastructure projects are characterized in terms of linguistic expressions of 'performance' with respect to factors or impacts and the 'importance' of those factors/impacts. A simple example is developed to illustrate the method in the context of three road infrastructure projects assessed against five factors/impacts. In addition, a means to include hard or crisp factors is presented and illustrated with respect to a sixth factor.
Resumo:
Solid earth simulations have recently been developed to address issues such as natural disasters, global environmental destruction and the conservation of natural resources. The simulation of solid earth phenomena involves the analysis of complex structures including strata, faults, and heterogeneous material properties. Simulation of the generation and cycle of earthquakes is particularly important, but such simulations require the analysis of complex fault dynamics. GeoFEM is a parallel finite-element analysis system intended for solid earth field phenomena problems. This paper describes recent development in the GeoFEM project for the simulation of earthquake generation and cycles.
Resumo:
Motivation: A major issue in cell biology today is how distinct intracellular regions of the cell, like the Golgi Apparatus, maintain their unique composition of proteins and lipids. The cell differentially separates Golgi resident proteins from proteins that move through the organelle to other subcellular destinations. We set out to determine if we could distinguish these two types of transmembrane proteins using computational approaches. Results: A new method has been developed to predict Golgi membrane proteins based on their transmembrane domains. To establish the prediction procedure, we took the hydrophobicity values and frequencies of different residues within the transmembrane domains into consideration. A simple linear discriminant function was developed with a small number of parameters derived from a dataset of Type II transmembrane proteins of known localization. This can discriminate between proteins destined for Golgi apparatus or other locations (post-Golgi) with a success rate of 89.3% or 85.2%, respectively on our redundancy-reduced data sets.
Resumo:
Admission controls, such as trunk reservation, are often used in loss networks to optimise their performance. Since the numerical evaluation of performance measures is complex, much attention has been given to finding approximation methods. The Erlang Fixed-Point (EFP) approximation, which is based on an independent blocking assumption, has been used for networks both with and without controls. Several more elaborate approximation methods which account for dependencies in blocking behaviour have been developed for the uncontrolled setting. This paper is an exploratory investigation of extensions and synthesis of these methods to systems with controls, in particular, trunk reservation. In order to isolate the dependency factor, we restrict our attention to a highly linear network. We will compare the performance of the resulting approximations against the benchmark of the EFP approximation extended to the trunk reservation setting. By doing this, we seek to gain insight into the critical factors in constructing an effective approximation. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
In microarray studies, the application of clustering techniques is often used to derive meaningful insights into the data. In the past, hierarchical methods have been the primary clustering tool employed to perform this task. The hierarchical algorithms have been mainly applied heuristically to these cluster analysis problems. Further, a major limitation of these methods is their inability to determine the number of clusters. Thus there is a need for a model-based approach to these. clustering problems. To this end, McLachlan et al. [7] developed a mixture model-based algorithm (EMMIX-GENE) for the clustering of tissue samples. To further investigate the EMMIX-GENE procedure as a model-based -approach, we present a case study involving the application of EMMIX-GENE to the breast cancer data as studied recently in van 't Veer et al. [10]. Our analysis considers the problem of clustering the tissue samples on the basis of the genes which is a non-standard problem because the number of genes greatly exceed the number of tissue samples. We demonstrate how EMMIX-GENE can be useful in reducing the initial set of genes down to a more computationally manageable size. The results from this analysis also emphasise the difficulty associated with the task of separating two tissue groups on the basis of a particular subset of genes. These results also shed light on why supervised methods have such a high misallocation error rate for the breast cancer data.
Resumo:
The Lanczos algorithm is appreciated in many situations due to its speed. and economy of storage. However, the advantage that the Lanczos basis vectors need not be kept is lost when the algorithm is used to compute the action of a matrix function on a vector. Either the basis vectors need to be kept, or the Lanczos process needs to be applied twice. In this study we describe an augmented Lanczos algorithm to compute a dot product relative to a function of a large sparse symmetric matrix, without keeping the basis vectors.