146 resultados para Microbial biomas
Resumo:
Five strains of the filamentous bacterium 'Nostocoida limicola' III were successfully isolated into pure culture from samples of activated sludge biomass from five plants in Australia. 16S rRNA gene sequence analyses showed that all isolates were members of the Planctomycetales, most closely related to Isosphaera pallida, but they differed phenotypically from this species in that they did not glide and were not thermotolerant. The ultrastructure of these 'N. limicola' III isolates was also consistent with them being Planctomycetales, in that they possessed complex intracellular membrane systems compartmentalizing the cells. However, the arrangements of these intracellular membranes differed between isolates. These data confirm that 'N. limicola' III is phylogenetically unrelated to both 'N. limicola' I and 'N. limicola' II, activated sludge filamentous bacteria which share morphological features in common with 'N. limicola' III and which have been presumed historically to be the same or very similar bacteria.
Resumo:
Ten years ago, an anaerobic ammonium oxidation ('anammox') process was discovered in a denitrifying pilot plant reactor. From this system, a highly enriched microbial community was obtained, dominated by a single deep-branching planctomycete, Candidatus Brocadia anammoxidans. Phylogenetic inventories of different wastewater treatment plants with anammox activity have suggested that at least two genera in Planctomycetales can catalyse the anammox process. Electron microscopy of the ultrastructure of B. anammoxidans has shown that several membrane-bounded compartments are present inside the cytoplasm. Hydroxylamine oxidoreductase, a key anammox enzyme, is found exclusively inside one of these compartments, tentatively named the 'anammoxosome'.
Resumo:
Until recently, West Nile (WN) and Kunjin (KUN) viruses were classified as distinct types in the Flavivirus genus. However, genetic and antigenic studies on isolates of these two viruses indicate that the relationship between them is more complex. To better define this relationship, we performed sequence analyses on 32 isolates of KUN virus and 28 isolates of WN virus from different geographic areas, including a WN isolate from the recent outbreak in New York. Sequence comparisons showed that the KUN virus isolates from Australia were tightly grouped but that the WN virus isolates exhibited substantial divergence and could be differentiated into four district groups. KUN virus isolates from Australia were antigenically homologous and distinct from the WN isolates and a Malaysian KUN virus. Our results suggest that KUN and WN viruses comprise a group of closely related viruses that can be differentiated into subgroups on the basis of genetic and antigenic analyses.
Resumo:
Surrogate methods for detecting lateral gene transfer are those that do not require inference of phylogenetic trees. Herein I apply four such methods to identify open reading frames (ORFs) in the genome of Escherichia coli K12 that may have arisen by lateral gene transfer. Only two of these methods detect the same ORFs more frequently than expected by chance, whereas several intersections contain many fewer ORFs than expected. Each of the four methods detects a different non-random set of ORFs. The methods may detect lateral ORFs of different relative ages; testing this hypothesis will require rigorous inference of trees. (C) 2001 Federation of European Microbiological Societies. Published by Elsevier Science BN. All rights reserved.
Resumo:
Marine viruses have been shown to affect phytoplankton productivity; however, there are no reports on the effect of viruses on benthic microalgae (microphytobenthos). Hence, this study investigated the effects of elevated concentrations of virus-like particles on the photosynthetic physiology and community composition of benthic microalgae and phytoplankton. Virus populations were collected near the sediment surface and concentrated by tangential flow ultrafiltration, and the concentrate was added to benthic and water column samples that were obtained along a eutrophication gradient in the Brisbane River/Moreton Bay estuary, Australia. Photosynthetic and community responses of benthic microalgae, phytoplankton and bacteria were monitored over 7 d in aquaria and in situ. Benthic microalgal communities responded to viral enrichment in both eutrophic and oligotrophic sediments. In eutrophic sediments, Euglenophytes (Euglena sp.) and bacteria decreased in abundance by 20 to 60 and 26 to 66%, respectively, from seawater controls. In oligotrophic sediments, bacteria decreased in abundance by 30 to 42% from seawater controls but the dinoflagellate Gymnodinium sp. increased in abundance by 270 to 3600% from seawater controls, The increased abundance of Gymnodinium sp. may be related to increased availability of dissolved organic matter released from lysed bacteria. Increased (140 to 190% from seawater controls) initial chlorophyll a fluorescence measured with a pulse-amplitude modulated fluorometer was observed in eutrophic benthic microalgal incubations following virus enrichment, consistent with photosystem II damage. Virus enrichment in oligotrophic water significantly stimulated carbon fixation rates, perhaps due to increased nutrient availability by bacterial lysis. The interpretation of data from virus amendment experiments is difficult due to potential interaction with unidentified bioactive compounds within seawater concentrates. However, these results show that viruses are capable of influencing microbial dynamics in sediments.
Resumo:
Coral reef degradation resulting from nutrient enrichment of coastal waters is of increasing global concern. Although effects of nutrients on coral reef organisms have been demonstrated in the laboratory, there is little direct evidence of nutrient effects on coral reef biota in situ. The ENCORE experiment investigated responses of coral reef organisms and processes to controlled additions of dissolved inorganic nitrogen (N) and/or phosphorus (P) on an offshore reef(One Tree Island) at the southern end of the Great Barrier Reef, Australia. A multi-disciplinary team assessed a variety of factors focusing on nutrient dynamics and biotic responses. A controlled and replicated experiment was conducted over two years using twelve small patch reefs ponded at low tide by a coral rim. Treatments included three control reefs (no nutrient addition) and three + N reefs (NH4Cl added), three + P reefs (KH2PO4 added), and three + N + P reefs. Nutrients were added as pulses at each low tide (ca twice per day) by remotely operated units. There were two phases of nutrient additions. During the initial, low-loading phase of the experiment nutrient pulses (mean dose = 11.5 muM NH4+; 2.3 muM PO4-3) rapidly declined, reaching near-background levels (mean = 0.9 muM NH4+; 0.5 muM PO4-3) within 2-3 h. A variety of biotic processes, assessed over a year during this initial nutrient loading phase, were not significantly affected, with the exception of coral reproduction, which was affected in all nutrient treatments. In Acropora longicyathus and A. aspera, fewer successfully developed embryos were formed, and in A. longicyathus fertilization rates and lipid levels decreased. In the second, high-loading, phase of ENCORE an increased nutrient dosage (mean dose = 36.2 muM NH4+; 5.1 muM PO4-3 declining to means of 11.3 muM NH4+ and 2.4 muM PO4-3 at the end of low tide) was used for a further year, and a variety of significant biotic responses occurred. Encrusting algae incorporated virtually none of the added nutrients. Organisms containing endosymbiotic zooxanthellae (corals and giant clams) assimilated dissolved nutrients rapidly and were responsive to added nutrients. Coral mortality, not detected during the initial low-loading phase, became evident with increased nutrient dosage, particularly in Pocillopora damicornis. Nitrogen additions stunted coral growth, and phosphorus additions had a variable effect. Coral calcification rate and linear extension increased in the presence of added phosphorus but skeletal density was reduced, making corals more susceptible to breakage. Settlement of all coral larvae was reduced in nitrogen treatments, yet settlement of larvae from brooded species was enhanced in phosphorus treatments. Recruitment of stomatopods, benthic crustaceans living in coral rubble, was reduced in nitrogen and nitrogen plus phosphorus treatments. Grazing rates and reproductive effort of various fish species were not affected by the nutrient treatments. Microbial nitrogen transformations in sediments,were responsive to nutrient loading with nitrogen fixation significantly increased in phosphorus treatments and denitrification increased in all treatments to which nitrogen had been added. Rates of bioerosion and grazing showed no significant effects of added nutrients, ENCORE has shown that reef organisms and processes investigated ill situ were impacted by elevated nutrients. Impacts mere dependent on dose level, whether nitrogen and/or phosphorus mere elevated and were often species-specific. The impacts were generally sub-lethal and subtle and the treated reefs at the end of the experiment mere visually similar to control reefs. Rapid nutrient uptake indicates that nutrient concentrations alone are not adequate to assess nutrient condition of reefs. Sensitive and quantifiable biological indicators need to be developed for coral reef ecosystems. The potential bioindicators identified in ENCORE should be tested in future research on coral reef/nutrient interactions. Synergistic and cumulative effects of elevated nutrients and other environmental parameters, comparative studies of intact vs. disturbed reefs, offshore vs, inshore reefs, or the ability of a nutrient-stressed reef to respond to natural disturbances require elucidation. An expanded understanding of coral reef responses to anthropogenic impacts is necessary, particularly regarding the subtle, sub-lethal effects detected in the ENCORE studies. (C) 2001 Published by Elsevier Science Ltd.
Resumo:
The sera of 271 pteropid bats (or flying foxes) collected from Queensland, New South Wales, Western Australia, and the Northern Territory were screened against it reference panel of 21 Leptospira spp. using the microscopic agglutination test (MAT). Sera were collected from December 1997 through August 1999. The MAT panel represented those serovars previously isolated in Australia. as well as exotic serovar found in neighboring countries. Leptospiral antibodies were detected in 75 (28%) of the sera and represented seven serovars, one of which. L. interrogans serovar cynopteri has been regarded as exotic to Australia. Sixty sera were reactive to one serovar, 12 sera were reactive to two serovars, and three sera were reactive to three serovars. The L. kirschneri serovar australis was most frequently identified (60.2%). The findings suggest a previously unrecognized role of pteropid bats in the natural history of leptospirosis. The potential exists for establishment of infection in new host species, the transmission of new serovars to known host species, and for changes in virulence of leptospires as a result of passage through these species.
Resumo:
Tarramba leucaena (Leucaena leucocephala cv. Tarramba) foliage had per kilogram dry matter, 169 g protein and 29.8 g condensed tannins. Its value as a supplement, given either with or without urea, to sheep given a low-quality Callide Rhodes grass (Chloris gayana cv. Callide) hay was studied. Six rumen fistulated sheep (mean +/- s.d. liveweight, 34 +/- 1.4 kg) were used to compare 6 dietary treatments in an incomplete latin square design. Rhodes grass hay was given ad libitum either alone, or with urea 7 g/day (U), or with leucaena 150 g/day (L150), or leucaena with urea (L150U), or leucaena 300 g/day (L300), or leucaena with urea (L300U). Digestible organic matter intake was increased significantly by leucaena supplementation although digestibility of the whole diet did not alter. Rumen fluid ammonia-N was not altered by leucaena supplementation, but was increased by urea. This suggests that Tarramba foliage protein has some resistance to ruminal degradation. Liquid and solids passage rates were not affected by the treatments. Microbial nitrogen supply to the intestine (g/day), and the efficiency of microbial nitrogen synthesis (g/kg organic matter apparently digested in the rumen), were increased by leucaena supplementation (P
Resumo:
Soil carbon is a major component of the terrestrial carbon cycle. The soils of the world contain more carbon than the combined total amounts occurring in vegetation and the atmosphere. Consequently, soils are a major reservoir of carbon and an important sink. Because of the relatively long period of time that carbon spends within the soil and is thereby withheld from the atmosphere, it is often referred to as being sequestered. Increasing the capacity of soils to sequester C provides a partial, medium-term countermeasure to help ameliorate the increasing CO2 levels in the atmosphere arising from fossil fuel burning and land clearing. Such action will also help to alleviate the environmental impacts arising from increasing levels of atmospheric CO2. The C sequestration potential of any soil depends on its capacity to store resistant plant components in the medium term and to protect and accumulate the humic substances (HS) formed from the transformations or organic materials in the soil environment. The sequestration potential of a soil depends on the vegetation it supports, its mineralogical composition, the depth of the solum, soil drainage, the availability of water and air, and the temperature of the soil environment. The sequestration potential also depends on the chemical characteristics of the soil organic matter and its ability to resist microbial decomposition. When accurate information for these features is incorporated in model systems, the potentials of different soils to sequester C can be reliably predicted. It is encouraging to know that improved soil and crop management systems now allow field yields to be maintained and soil C reserves to be increased, even for soils with depleted levels of soil C. Estimates of the soil C sequestration potential are discussed. Inevitably HS are the major components of the additionally sequestered C. It will be important to know more about the compositions and associations of these substances in the soil if we are able to predict reasonably accurately the ability of any soil type to sequester C in different cropping and soil management systems.
Resumo:
Calcium precipitation can have a number of effects on the performance of high-rate anaerobic performance including cementing of the sludge bed, limiting diffusion, and diluting the active biomass. The aim of this study was to observe the influence of precipitation in a stable full-scale system fed with high-calcium paper factory wastewater. Granules were examined from an upflow anaerobic sludge blanket reactor (volume 1,805 m(3)) at a recycled paper mill with a loading rate of 5.7-6.6 kgCOD.m(-3).d(-1) and influent calcium concentration of 400-700 gCa(.)m(-3). The granules were relatively small (1 mm), with a 200-400 mum core of calcium precipitate as observed with energy dispersive X-ray spectroscopy. Compared to other granules, Methanomicrobiales not Methanobacteriales were the dominant hydrogen or formate utilisers, and putative acidogens were filamentous. The strength of the paper mill fed granules was very high when compared to granules from other full-scale reactors, and a partial linear correlation between granule strength and calcium concentration was identified.
Resumo:
The activated sludge comprises a complex microbiological community. The structure (what types of microorganisms are present) and function (what can the organisms do and at what rates) of this community are determined by external physico -chemical features and by the influent to the sewage treatment plant. The external features we can manipulate but rarely the influent. Conventional control and operational strategies optimise activated sludge processes more as a chemical system than as a biological one. While optimising the process in a short time period, these strategies may deteriorate the long-term performance of the process due to their potentially adverse impact on the microbial properties. Through briefly reviewing the evidence available in the literature that plant design and operation affect both the structure and function of the microbial community in activated sludge, we propose to add sludge population optimisation as a new dimension to the control of biological wastewater treatment systems. We stress that optimising the microbial community structure and property should be an explicit aim for the design and operation of a treatment plant. The major limitations to sludge population optimisation revolve around inadequate microbiological data, specifically community structure, function and kinetic data. However, molecular microbiological methods that strive to provide that data are being developed rapidly. The combination of these methods with the conventional approaches for kinetic study is briefly discussed. The most pressing research questions pertaining to sludge population optimisation are outlined. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
High levels of mortality in the Mediterranean bath sponge industry have raised concerns for the future of sponge farms. Healthy sponges feed predominantly on bacteria, and many harbour a wide diversity of inter- and extra-cellular symbiotic bacteria. Here we describe the first isolation and description of a pathogenic bacterium from an infected marine sponge. Microbiological examination of tissue necrosis in the Great Barrier Reef sponge Rhopaloeides odorabile resulted in isolation of the bacterial strain NW4327. Sponges infected with strain NW4327 exhibited high levels of external tissue necrosis, and the strain was re-isolated from infected sponges. A single morphotype, which had burrowed through the collagenous spongin fibres causing severe necrosis, was observed microscopically. Strain NW4327 was capable of degrading commercial preparations of azo-collagen, providing further evidence of its involvement in spongin fibre necrosis, Strain NW4327 disrupted the microbial community associated with R. odorabile and was able to infect and kill healthy sponge tissue. 16S rRNA sequence analysis revealed that strain NW4327 is a novel member of the alpha-proteobacteria.
Resumo:
The option for biological nitrogen removal has recently been broadened with the description of simultaneous nitrification/denitrification, anaerobic ammonium oxidation (ANAMMOX) and the concept of CANON (completely autotrophic nitrogen removal over nitrite). An autotrophic anaerobic ammonium oxidation (AAAO) consortium was successfully selected and enriched from municipal treatment plant sludges in Sydney, Australia, but not from industrial coke-oven wastewater sludges. Chemolithoautotrophic basic salt (CLABS) medium was used in the selection of AAAO organisms and chloramphenicol was added to the initial stage of selection to eliminate denitrifiers. Two different temperatures, 37degreesC and 55degreesC, were used in the selection of mesophilic and thermophilic consortia, respectively. Thermophilic AAAO organisms were not selected at 55degreesC. Mesophilic AAAO activities, however, were evident in both batch and continuous cultures, whereby ammonium was consumed concurrently with a decrease of nitrite, giving a ratio of 1:1-1:1.3 in ammonium removal rate over nitrite consumption rate. A continuous-mode mesophilic fixed-bed reactor was established to enrich the AAAO consortium. After 1 year, biofilms, pinkish in color, had developed on the support media and side wall of the feed-line tubing. Ammonium and nitrite consumption increased from similar to15 mg to 60 mg d(-1) L-1 over a period of 243 days. Later, transmission electron microscopy (TEM) and fluorescence in situ hybridization (FISH) techniques revealed that the dominant cell type in the AAAO consortium had a similar morphology and 16S rDNA sequence homology to that of the recently described ANAMMOX organism, Brocadia anammoxidans.
Resumo:
The focus of rapid diagnosis of infectious diseases of children in the last decade has shifted from variations of the conventional laboratory techniques of antigen detection, microscopy and culture to that of molecular diagnosis of infectious agents. Pediatricians will need to be able to interpret the use, limitations and results of molecular diagnostic techniques as they are increasingly integrated into routine clinical microbiology laboratory protocols. PCR is the best known and most successfully implemented diagnostic molecular technology to date. It can detect specific infectious agents and determine their virulence and antimicrobial genotypes with greater speed, sensitivity and specificity than conventional microbiology methods. Inherent technical limitations of PCR are present, although they are reduced in laboratories that follow suitable validation and quality control procedures. Variations of PCR together with advances in nucleic acid amplification technology have broadened its diagnostic capabilities in clinical infectious disease to now rival and even surpass traditional methods in some situations. Automation of all components of PCR is now possible. The completion of the genome sequencing projects for significant microbial pathogens, in combination with PCR and DNA chip technology, will revolutionize the diagnosis and management of infectious diseases.