135 resultados para Four-color problem
Resumo:
The present study examined the comparative efficacy of intervening at the caregiver/care-recipient dyadic level, versus the individual caregiver level, for caregivers and their care-recipients with HIV/AIDS. Participants were randomly assigned to a Dyad Intervention (DI), a Caregiver Intervention (CI) or Wait List Control group (WLC), and assessed by interview and self-administered scales immediately before treatment and eight weeks later. Participants in the intervention groups also completed a four-month follow-up assessment. Dependent variables included global distress, social adjustment, dyadic adjustment, subjective health status, HIV/AIDS knowledge and target problem ratings. Results showed that caregivers in the DI group showed greater improvement from pre- to post-treatment on global distress, dyadic adjustment and target problems than the CI and WLC caregivers. The CI and DI caregivers showed greater improvement than the WLC group on all dependent variables except social adjustment. Care-recipients in the DI group improved significantly from pre- to post-treatment on dyadic adjustment, social adjustment, knowledge, subjective health status and Target Problem 1, whereas the CI and WLC care-recipients failed to improve on any of these measures. The treatment gains made by the DI caregivers and care-recipients on most dependent variables were maintained at a four-month follow-up. Findings support a reciprocal determinism approach to the process of dyadic adjustment and suggest that intervening at the caregiver/care-recipient level may produce better outcomes for both the caregiver and care-recipient than intervening at the individual caregiver level.
Resumo:
High index Differential Algebraic Equations (DAEs) force standard numerical methods to lower order. Implicit Runge-Kutta methods such as RADAU5 handle high index problems but their fully implicit structure creates significant overhead costs for large problems. Singly Diagonally Implicit Runge-Kutta (SDIRK) methods offer lower costs for integration. This paper derives a four-stage, index 2 Explicit Singly Diagonally Implicit Runge-Kutta (ESDIRK) method. By introducing an explicit first stage, the method achieves second order stage calculations. After deriving and solving appropriate order conditions., numerical examples are used to test the proposed method using fixed and variable step size implementations. (C) 2001 IMACS. Published by Elsevier Science B.V. All rights reserved.
Resumo:
This paper introduces a new reconstruction algorithm for electrical impedance tomography. The algorithm assumes that there are two separate regions of conductivity. These regions are represented as eccentric circles. This new algorithm then solves for the location of the eccentric circles. Due to the simple geometry of the forward problem, an analytic technique using conformal mapping and separation of variables has been employed. (C) 2002 John Wiley Sons, Inc.
Resumo:
We investigate spectral functions extracted using the maximum entropy method from correlators measured in lattice simulations of the (2+1)-dimensional four-fermion model. This model is particularly interesting because it has both a chirally broken phase with a rich spectrum of mesonic bound states and a symmetric phase where there are only resonances. In the broken phase we study the elementary fermion, pion, sigma, and massive pseudoscalar meson; our results confirm the Goldstone nature of the π and permit an estimate of the meson binding energy. We have, however, seen no signal of σ→ππ decay as the chiral limit is approached. In the symmetric phase we observe a resonance of nonzero width in qualitative agreement with analytic expectations; in addition the ultraviolet behavior of the spectral functions is consistent with the large nonperturbative anomalous dimension for fermion composite operators expected in this model.
Resumo:
In this paper we refer to the gene-to-phenotype modeling challenge as the GP problem. Integrating information across levels of organization within a genotype-environment system is a major challenge in computational biology. However, resolving the GP problem is a fundamental requirement if we are to understand and predict phenotypes given knowledge of the genome and model dynamic properties of biological systems. Organisms are consequences of this integration, and it is a major property of biological systems that underlies the responses we observe. We discuss the E(NK) model as a framework for investigation of the GP problem and the prediction of system properties at different levels of organization. We apply this quantitative framework to an investigation of the processes involved in genetic improvement of plants for agriculture. In our analysis, N genes determine the genetic variation for a set of traits that are responsible for plant adaptation to E environment-types within a target population of environments. The N genes can interact in epistatic NK gene-networks through the way that they influence plant growth and development processes within a dynamic crop growth model. We use a sorghum crop growth model, available within the APSIM agricultural production systems simulation model, to integrate the gene-environment interactions that occur during growth and development and to predict genotype-to-phenotype relationships for a given E(NK) model. Directional selection is then applied to the population of genotypes, based on their predicted phenotypes, to simulate the dynamic aspects of genetic improvement by a plant-breeding program. The outcomes of the simulated breeding are evaluated across cycles of selection in terms of the changes in allele frequencies for the N genes and the genotypic and phenotypic values of the populations of genotypes.
Resumo:
Couples with alcohol and relationship problems often report poor communication, yet little is known about the communication of maritally distressed couples in which the woman abuses alcohol (MDWA couples). Compared with maritally distressed couples without alcohol problems (MDNA) and couples with neither problem (NDNA), MDWA couples showed a distinctive pattern of negative communication. Similar to MDNA men, MDWA men spoke negatively to their partners but listened positively to their partners much like NDNA men. MDWA women listened negatively, much as MDNA women did, but spoke positively, like NDNA women did. The interactions of MDWA couples can be characterized as a male-demand-female-withdraw pattern, which is a gender reversal of the female-demand-male-withdraw pattern often observed in MDNA couples.
Resumo:
The primary sequence and three-dimensional structure of a novel peptide toxin isolated from the Australian funnel-web spider Hadronyche infensa sp. is reported. ACTX-HI:OB4219 contains 38 amino acids, including eight-cysteine residues that form four disulfide bonds. The connectivities of these disulfide bonds were previously unknown but have been unambiguously determined in this study. Three of these disulfide bonds are arranged in an inhibitor cystine-knot (ICK) motif, which is observed in a range of other disulfide-rich peptide toxins. The motif incorporates an embedded ring in the structure formed by two of the disulfides and their connecting backbone segments penetrated by a third disulfide bond. Using NMR spectroscopy, we determined that despite the isolation of a single native homologous product by RP-HPLC, ACTX-HI:OB4219 possesses two equally populated conformers in solution. These two conformers were determined to arise from cis/trans isomerization of the bond preceding Pro30. Full assignment of the NMR spectra for both conformers allowed for the calculation of their structures, revealing, the presence of a triple-stranded antiparallel sheet consistent with the inhibitor cystine-knot (ICK) motif.