202 resultados para Forest View
Resumo:
View to ocean for upper level viewing deck.
Resumo:
View to ocean as seen from upper level viewing deck.
Resumo:
View to ocean for upper level viewing deck.
Resumo:
As seen from dining room.
Resumo:
This pilot project at Cotton Tree, Maroochydore, on two adjacent, linear parcels of land has one of the properties privately owned while the other is owned by the public housing authority. Both owners commissioned Lindsay and Kerry Clare to design housing for their separate needs which enabled the two projects to be governed by a single planning and design strategy. This entailed the realignment of the dividing boundary to form two approximately square blocks which made possible the retention of an important stand of mature paperbark trees and gave each block a more useful street frontage. The scheme provides seven two-bedroom units and one single-bedroom unit as the private component, with six single-bedroom units, three two-bedroom units and two three-bedroom units forming the public housing. The dwellings are deployed as an interlaced mat of freestanding blocks, car courts, courtyard gardens, patios and decks. The key distinction between the public and private parts of the scheme is the pooling of the car parking spaces in the public housing to create a shared courtyard. The housing climbs to three storeys on its southern edge and falls to a single storey on the north-western corner. This enables all units and the principal private outdoor spaces to have a northern orientation. The interiors of both the public and private units are skilfully arranged to take full advantage of views, light and breeze.
Resumo:
This pilot project at Cotton Tree, Maroochydore, on two adjacent, linear parcels of land has one of the properties privately owned while the other is owned by the public housing authority. Both owners commissioned Lindsay and Kerry Clare to design housing for their separate needs which enabled the two projects to be governed by a single planning and design strategy. This entailed the realignment of the dividing boundary to form two approximately square blocks which made possible the retention of an important stand of mature paperbark trees and gave each block a more useful street frontage. The scheme provides seven two-bedroom units and one single-bedroom unit as the private component, with six single-bedroom units, three two-bedroom units and two three-bedroom units forming the public housing. The dwellings are deployed as an interlaced mat of freestanding blocks, car courts, courtyard gardens, patios and decks. The key distinction between the public and private parts of the scheme is the pooling of the car parking spaces in the public housing to create a shared courtyard. The housing climbs to three storeys on its southern edge and falls to a single storey on the north-western corner. This enables all units and the principal private outdoor spaces to have a northern orientation. The interiors of both the public and private units are skilfully arranged to take full advantage of views, light and breeze.
Resumo:
View to landscape beyond from interior of house.
Resumo:
As seen from interior of house.
Resumo:
View past timber blinds to balcony and timber sunscreens.
Resumo:
View of ocean and coastal vegetation
Resumo:
The reflectance signatures of plantation pine canopy and understorey components were measured using a spectro-radiometer. The aim was to establish whether differences observed in the reflectance signature of stressed and unstressed pine needles were consistent with observed differences in the reflectance of multispectral Landsat Thematic Mapper (TM) images of healthy and stressed forest. Because overall scene reflectance includes the contribution of each scene component, needle reflectance may not be representative of canopy reflectance. In this investigation, a limited dataset of reflectance signatures from stressed and unstressed needles confirmed the negative relationship between pine needle health and reflectance which was observed in visible red wavelengths. However, the reflectance contribution from bushes, pine needle litter and bare soil tended to reinforce this relationship suggesting that in this instance, overall scene reflectance is comprised of the proportional reflectance of each scene component. In near infrared wavelengths, differences between healthy and stressed needle reflectance suggested a strong positive relationship between reflectance and tree health. For Landsat TM images, previous research had only observed a weak positive relationship between stand health and near infrared reflectance in these pine canopies. This suggests that for multispectral Landsat TM images, reflectance of near infrared light from pine canopies may be affected by other factors which may include the scattering of light within canopies. These results are seen as promising for the use of hyperspectral images to detect stand health, provided that pixel reflectance is not influenced by other scene components.
Resumo:
Xylem sap from woody species in the wet/dry tropics of northern Australia was analyzed for N compounds. At the peak of the dry season, arginine was the main N compound in sap of most species of woodlands and deciduous monsoon forest. In the wet season, a marked change occurred with amides becoming the main sap N constituents of most species. Species from an evergreen monsoon forest, with a permanent water source, transported amides in the dry season. In the dry season, nitrate accounted for 7 and 12% of total xylem sap N in species of deciduous and evergreen monsoon forests, respectively In the wet season, the proportion of N present as nitrate increased to 22% in deciduous monsoon forest species. These results suggest that N is taken up and assimilated mainly in the wet season and that this newly assimilated N is mostly transported as amide-N (woodland species, monsoon forest species) and nitrate (monsoon forest species). Arginine is the form in which stored N is remobilized and transported by woodland and deciduous monsoon forest species in the dry season. Several proteins, which may represent bark storage proteins, were detected in inner bark tissue from a range of trees in the dry season, indicating that, although N uptake appears to be limited in the dry season, the many tree and shrub species that produce flowers, fruit or leaves in the dry season use stored N to support growth. Nitrogen characteristics of the studied species are discussed in relation to the tropical environment.
Resumo:
Photoinhibition, as measured by the dark-adapted chlorophyll a fluorescence ratio F-v/F-m, was assessed in Syzygium moorei, a species with dark green juvenile leaves, Syzygium corynanthum, which has light green juvenile leaves, and two species with pink-red juvenile leaves (Syzygium wilsonii and Syzygium luehmannii). All plants were glasshouse-grown (maximum PPFD 1500 mu mol m(-2) s(-1)) under optimum nutrition and water. When measured at midday, dark-adapted F-v/F-m ratios of juvenile leaves gradually increased in art species as percentage of full leaf expansion (% FLE) increased. Fluorescence measurement 3 h after sunset or pre-dawn also showed a developmental effect on F-v/F-m, with juvenile leaves of S, luehmannii and S. wilsonii showing much lower F-v/F-m at all stages of development. Dark-adapted F-v/F-m values in both juvenile and mature leaves generally never exceeded 0.8 at any stage in any of the species. Courses of F-v/F-m on sunny days showed greater diurnal photoinhibition in green juvenile (c, 50% FLE) leaves of S, moorei (24%) and S, corynanthum (36%) than in mature leaves of the previous flush in these species (<10%), Diurnal photoinhibition was statistically similar (18-24%) in pink-red juvenile and green mature leaves of S, luehmannii and S, wilsonii. Re-positioning juvenile leaves of S, wilsonii horizontally increased diurnal photoinhibition, Exposure of leaves to a standard mild photoinhibitory right treatment (30 min at 1000 mu mol m(-2) s(-1)) showed that juvenile leaves of air species had a lower percentage of high energy state quenching (qE) and a higher percentage of photoinhibitory quenching (ql) than mature leaves.
Resumo:
Nitrogen relations of natural and disturbed tropical plant communities in northern Australia (Kakadu National Park) were studied. Plant and soil N characteristics suggested that differences in N source utilisation occur at community and species level. Leaf and xylem sap N concentrations of plants in different communities were correlated with the availability of inorganic soil N (NH4+ and NO3-). In general, rates of leaf NO3- assimilation were low. Even in communities with a higher N status, including deciduous monsoon forest, disturbed wetland, and a revegetated mine waste rock dump, levels of leaf nitrate reductase, xylem and leaf NO3 levels were considerably lower than those that have been reported for eutrophic communities. Although NO3- assimilation in escarpment and eucalypt woodlands, and wetland, was generally low, within these communities there was a suite of species that exhibited a greater capacity for NO3- assimilation. These high-NO3- species were mainly annuals, resprouting herbs or deciduous trees that had leaves with high N contents. Ficus, a high-NO3- species, was associated with soil exhibiting higher rates of net mineralisation and net nitrification. Low-NO3- species were evergreen perennials with low leaf N concentrations. A third group of plants, which assimilated NO3- (albeit at lower rates than the high-NO3- species), and had high-N leaves, were leguminous species. Acacia species, common in woodlands, had the highest leaf N contents of all woody species. Acacia species appeared to have the greatest potential to utilise the entire spectrum of available N sources. This versatility in N source utilisation may be important in relation to their high tissue N status and comparatively short life cycle. Differences in N utilisation are discussed in the context of species life strategies and mycorrhizal associations.