168 resultados para Fluid dynamic measurements.
Resumo:
Reports experimental results involving 204 members of the public who were asked their willingness to pay for the conservation of the mahogany glider Petaurus gracilis on three occasions: prior to information being provided to them about the glider and other wildlife species; after such information was provided, and after participants had an opportunity to see live specimens of this endangered species. Variations in the mean willingness to pay are analysed. Concerns arise about whether information provision and experience reveal ‘true’ contingent valuations of public goods and about the choice of the relevant contingent valuation measure.
Resumo:
A question is examined as to estimates of the norms of perturbations of a linear stable dynamic system, under which the perturbed system remains stable in a situation R:here a perturbation has a fixed structure.
Resumo:
Epstein–Barr virus (EBV) encephalitis has been reported rarely in the context of solid-organ and bone-marrow transplantation [1]. We report a case of a renal transplant recipient who developed EBV encephalitis following OKT3 therapy for acute allograft rejection. The diagnosis was expedited by the detection of EBV DNA in the cerebrospinal fluid (CSF) by nested polymerase chain reaction (PCR). Moreover, clinical recovery and clearance of CSF EBV DNA appeared to follow the institution of parenteral ganciclovir treatment.
Resumo:
Background Icodextrin is a high molecular weight, starch-derived glucose polymer, which is capable of inducing sustained ultrafiltration over prolonged (12–16 hour) peritoneal dialysis (PD) dwells. The aim of this study was to evaluate the ability of icodextrin to alleviate refractory, symptomatic fluid overload and prolong technique survival in PD patients. Methods A prospective, open-label, pre-test/post-test study was conducted in 17 PD patients (8 females/9 males, mean age 56.8 ± 2.9 years) who were on the verge of being transferred to haemodialysis because of symptomatic fluid retention that was refractory to fluid restriction, loop diuretic therapy, hypertonic glucose exchanges and dwell time optimisation. One icodextrin exchange (2.5 L 7.5%, 12-hour dwell) was substituted for a long-dwell glucose exchange each day. Results Icodextrin significantly increased peritoneal ultrafiltration (885 ± 210 ml to 1454 ± 215 ml, p < 0.05) and reduced mean arterial pressure (106 ± 4 to 96 ± 4 mmHg, p < 0.05), but did not affect weight, plasma albumin concentration, haemoglobin levels or dialysate:plasma creatinine ratio. Diabetic patients (n = 12) also experienced improved glycaemic control (haemoglobin Alc decreased from 8.9 ± 0.7% to 7.9 ± 0.7%, p < 0.05). Overall PD technique survival was prolonged by a mean of 11.6 months (95% CI 6.0–17.3 months). On multivariate Cox proportional hazards analysis, extension of technique survival by icodextrin was only significantly predicted by baseline net daily peritoneal ultrafiltration (adjusted HR 2.52, 95% CI 1.13–5.62, p < 0.05). Conclusions Icodextrin significantly improved peritoneal ultrafiltration and extended technique survival in PD patients with symptomatic fluid overload, especially those who had substantially impaired peritoneal ultrafiltration.
Resumo:
The extended X-ray absorption fine structure spectroscopy (EXAFS) of (ND4)(2)[CU(D2O)(6)](SO4)(2) at 5, 14,100, 200, and 298 K is reported. This indicates that the Cu-O bond lengths of the Cu(D2O)(6)(2+) ion do not change significantly within this temperature range, which contrasts with EPR results and X-ray and neutron diffraction experiments, which imply that two of the Cu-(D2O) bonds converge in length as the temperature is raised. The EXAFS measurements thus confirm that the bond distances yielded by the diffraction experiments refer to the average positions of ligands involved in a dynamic equilibrium in which the directions of the long and intermediate bonds of the Jahn-Teller distorted Cu(D2O)(6)(2+) ion are interchanged in the crystal lattice. Analysis of the displacement parameters is consistent with this interpretation, as are the wave functions calculated using a model involving Jahn-Teller vibronic coupling and the influence of lattice strain interactions.
Resumo:
Shock-tunnel experiments have been performed to measure the effect on skin-friction drag in a supersonic combustor of flow disturbances induced by hydrogen fuel injection transverse to the airstream. Constant-area, circular cross section combustors of lengths varying up to 0.52 m were employed. The experiments were done at a stagnation enthalpy of 7.2 MJ . kg(-1) and a Mach number of 4.3, with a boundary layer that was turbulent downstream of the 0.14-m station in the combustors. Combustor skin-friction drag was measured by a method based on the stress wave force balance, the method being validated by agreement between fuel-off skin-friction drag measurements and predictions using existing skin-friction theories. When fuel was injected, it was found that the drag remained at fuel-off values. Thus, the streamwise vortices and other flow disturbances induced by the fuel injection, mixing, and combustion, which are expected to be present in a scramjet combustor, did not influence the skin-friction drag of the combustors.
Resumo:
Purpose: This study was designed to investigate the immediate effect of exercise intensity and duration on body fluid volumes in rats throughout a 3-wk exercise program. Methods: Changes in the extracellular water (ECW) and total body water (TBW) volumes of rats were measured preexercise and postexercise using multiple frequency bioelectrical impedance analysis. Groups of rats were exercised at two intensities (6 m.min(-1) and 12 m.min(-1)) for two exercise times (60 min and 90 min) 5 d.wk(-1) during a 3-wk period. Changes in plasma electrolytes, glucose, and lactate resulting from the exercise were also measured on 3 d of each week. Results: Each group of animals showed significant losses in ECW and TBW as a direct result of daily exercise. The magnitude of fluid loss was directly related to the intensity of the exercise, bur not to exercise duration; although the magnitude of daily fluid loss at the higher intensity exercise (12 m.min(-1)) decreased as the study progressed, possibly indicating a training effect. Conclusion: At low-intensity exercise, there is a small bur significant loss in both TBW and ECW fluids, and the magnitude of these losses does not change throughout a 3-wk exercise program. At moderate levels of exercise intensity, there is a greater loss of both TBW and ECW fluids. However, the magnitudes of these losses decrease significantly during the 3-wk exercise program, thus demonstrating a training effect.
Resumo:
Concerns have been raised about the reproducibility of brachial artery reactivity (BAR), because subjective decisions regarding the location of interfaces may influence the measurement of very small changes in lumen diameter. We studied 120 consecutive patients with BAR to address if an automated technique could be applied, and if experience influenced reproducibility between two observers, one experienced and one inexperienced. Digital cineloops were measured automatically, using software that measures the leading edge of the endothelium and tracks this in sequential frames and also manually, where a set of three point-to-point measurements were averaged. There was a high correlation between automated and manual techniques for both observers, although less variability was present with expert readers. The limits of agreement overall for interobserver concordance were 0.13 +/-0.65 mm for the manual and 0.03 +/-0.74 mm for the automated measurement. For intraobserver concordance, the limits of agreement were -0.07 +/-0.38 mm for observer 1 and -0.16 +/-0.55 mm for observer 2. We concluded that BAR measurements were highly concordant between observers, although more concordant using the automated method, and that experience does affect concordance. Care must be taken to ensure that the same segments are measured between observers and serially.
Resumo:
The internal flexibility of the central seven-membered ring of a series of tricyclic antidepressant drugs (TCAs), imipramine {l}, amitriptyline {2}, doxepin {3}, and dothiepin {4}, has been investigated by H-1 and C-13 nuclear magnetic (NMR) techniques. Two dynamic processes were examined: ring inversion and bridge flexing. H-1 NMR lineshape analysis was used to obtain ring inversion barriers for 2-4. These studies yielded energy barriers of 14.3, 16.7, and 15.7 +/- 0.6 kcal/mol for the hydrochloride salts of doxepin, dothiepin, and amitriptyline, respectively. The barriers for the corresponding free bases were lower by 0.6 kcal/mol on average. (CT1)-C-13 relaxation measurements were used to determine the degree of bridge flexing associated with the central seven-membered ring for all four compounds. By fitting the T-1 data to a two-state jump model, lifetimes and amplitudes of rapid bridge flexing motions were determined. The results show that imipramine has the fastest rate of bridge flexing, followed by amitriptyline, doxepin, and dothiepin. The pharmacological profiles of the TCAs are complex and they interact with many receptor sites, resulting in numerous side effects and a general lack of understanding of their precise mode of action in different anxiety-related disorders. They all have similar three-dimensional structures, which makes it difficult to rationalize their differing relative potency in different assays/clinical settings. However, the clear finding here that there are significantly different degrees of internal mobility suggests that molecular dynamics should be an additional factor considered when trying to understand the mode of action of this clinically important family of molecules. (C) 2001 Wiley-Liss, Inc. and the American Pharmaceutical Association J Pharm Sci 90:713-721, 2001.
Resumo:
The overlapping expression profile of MEF2 and the class-II histone deacetylase, HDAC7, led us to investigate the functional interaction and relationship between these regulatory proteins. HDAC7 expression inhibits the activity of MEF2 (-A, -C, and -D), and in contrast MyoD and Myogenin activities are not affected. Glutathione S-transferase pulldown and immunoprecipitation demonstrate that the repression mechanism involves direct interactions between MEF2 proteins and HDAC7 and is associated with the ability of MEF2 to interact with the N-terminal 121 amino acids of HDAC7 that encode repression domain 1. The MADS domain of MEF2 mediates the direct interaction of MEF2 with HDAC7, MEF2 inhibition by HDAC7 is dependent on the N-terminal repression domain and surprisingly does not involve the C-terminal deacetylase domain. HDAC7 interacts with CtBP and other class-I and -II HDACs suggesting that silencing of MEF2 activity involves corepressor recruitment. Furthermore, we show that induction of muscle differentiation by serum withdrawal leads to the translocation of HDAC7 from the nucleus into the cytoplasm. This work demonstrates that HDAC7 regulates the function of MEF2 proteins and suggests that this class-II HDAC regulates this important transcriptional (and pathophysiological) target in heart and muscle tissue. The nucleocytoplasmic trafficking of HDAC7 and other class-II HDACs during myogenesis provides an ideal mechanism for the regulation of HDAC targets during mammalian development and differentiation.
The acquisition of movement skills: Practice enhances the dynamic stability of bimanual coordination
Resumo:
During bimanual movements, two relatively stable inherent patterns of coordination (in-phase and anti-phase) are displayed (e.g., Kelso, Am. J. Physiol. 246 (1984) R1000). Recent research has shown that new patterns of coordination can be learned. For example, following practice a 90 degrees out-of-phase pattern can emerge as an additional, relatively stable, state (e.g., Zanone & Kelso, J. Exp. Psychol.: Human Performance and Perception 18 (1992) 403). On this basis, it has been concluded that practice leads to the evolution and stabilisation of the newly learned pattern and that this process of learning changes the entire attractor layout of the dynamic system. A general feature of such research has been to observe the changes of the targeted pattern's stability characteristics during training at a single movement frequency. The present study was designed to examine how practice affects the maintenance of a coordinated pattern as the movement frequency is scaled. Eleven volunteers were asked to perform a bimanual forearm pronation-supination task. Time to transition onset was used as an index of the subjects' ability to maintain two symmetrically opposite coordinated patterns (target task - 90 degrees out-of-phase - transfer task - 270 degrees out-of-phase). Their ability to maintain the target task and the transfer task were examined again after five practice sessions each consisting of 15 trials of only the 90 degrees out-of-phase pattern. Concurrent performance feedback (a Lissajous figure) was available to the participants during each practice trial. A comparison of the time to transition onset showed that the target task was more stable after practice (p = 0.025). These changes were still observed one week (p = 0.05) and two months (p = 0.075) after the practice period. Changes in the stability of the transfer task were not observed until two months after practice (p = 0.025). Notably, following practice, transitions from the 90 degrees pattern were generally to the anti-phase (180 degrees) pattern, whereas, transitions from the 270 degrees pattern were to the 90 degrees pattern. These results suggest that practice does improve the stability of a 90 degrees pattern, and that such improvements are transferable to the performance of the unpractised 270 degrees pattern. In addition, the anti-phase pattern remained more stable than the practised 90 degrees pattern throughout. (C) 2001 Elsevier Science B.V. All rights reserved.