121 resultados para FUNCTIONALLY-SUBSTITUTED ARYL
Resumo:
Recent studies have revealed striking differences in pyramidal cell structure among cortical regions involved in the processing of different functional modalities. For example, cells involved in visual processing show systematic variation, increasing in morphological complexity with rostral progression from V1 through extrastriate areas. Differences have also been identified between pyramidal cells in somatosensory, motor and prefrontal cortex, but the extent to which the pyramidal cell phenotype may vary between these functionally related cortical regions remains unknown. In the present study we investigated the structure of layer III pyramidal cells in somatosensory and motor areas 3b, 4, 5, 6 and 7b of the macaque monkey. Cells were intracellularly injected in fixed, flat-mounted cortical slices and analysed for morphometric parameters. The size of the basal dendritic arbours, the number of their branches and their spine density were found to vary systematically between areas. Namely, we found a trend for increasing complexity in dendritic arbour structure through areas 3b, 5 and 7b. A similar trend occurred through areas 4 and 6. The differences in arbour structure may determine the number of inputs received by neurons and may thus be an important factor in determining function at the cellular and systems level.
Resumo:
1. Sulphotransferases are a superfamily of enzymes involved in both detoxification and bioactivation of endogenous and exogenous compounds. The arylsulphotransferase SULT1A1 has been implicated in a decreased activity and thermostability when the wild-type arginine at position 213 of the coding sequence is substituted by a histidine. SULT1A1 is the isoform primarily associated with the conversion of dietary N -OH arylamines to DNA binding adducts and is therefore of interest to determine whether this polymorphism is linked to colorectal cancer. 2. Genotyping, using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis, was performed using DNA samples of healthy control subjects (n = 402) and patients with histologically proven colorectal cancer (n = 383). Both control and test populations possessed similar frequencies for the mutant allele (32.1 and 31%, respectively; P = 0.935). Results were not altered when age and gender were considered as potential confounders in a logistic regression analysis. 3. Examination of the sulphonating ability of the two allozymes with respect to the substrates p -nitrophenol and paracetamol showed that the affinity and rate of sulphonation was unaffected by substitution of arginine to histidine at position 213 of the amino acid sequence. 4. From this study, we conclude that the SULT1A1 R213H polymorphism is not linked with colorectal cancer in this elderly Australian population.
Resumo:
The present study employs choline acetyltransferase (ChAT) immunohistochemistry to identify the cholinergic neuronal population in the central nervous system of the monotremes. Two of the three extant species of monotreme were studied: the platypus (Omithorhynchus anatinus) and the short-beaked echidna (Tachyglossus aculeatus). The distribution of cholinergic cells in the brain of these two species was virtually identical. Distinct groups of cholinergic cells were observed in the striatum, basal forebrain, habenula, pontomesencephalon, cranial nerve motor nuclei, and spinal cord. In contrast to other tetrapods studied with this technique, we failed to find evidence for cholinergic cells in the hypothalamus, the parabigeminal nucleus (or nucleus isthmus), or the cerebral cortex. The lack of hypothalamic cholinergic neurons creates a hiatus in the continuous antero-posterior aggregation of cholinergic neurons seen in other tetrapods. This hiatus might be functionally related to the phenomenology of monotreme sleep and to the ontogeny of sleep in mammals, as juvenile placental mammals exhibit a similar combination of sleep elements to that found in adult monotremes. Copyright (C) 2002 S. Karger AG, Basel.
Resumo:
This study (1) investigated functional (capture rate, foraging success) and numerical (density) responses of bar-tailed godwits Limosa lapponica to an experimental decrease in densities of their prey, and (2) estimated seasonal depletion of the stock of their main prey, the mictyrid crab Mictyris longicarpus, in a subtropical estuary. It was predicted that if intake rates of the godwits are in the vicinity of the gradient section of a functional response curve, i.e. are directly determined by prey density, they will respond rapidly to experimental reduction in the density of their prey. Bar-tailed godwits did respond rapidly, both functionally and numerically, to a decrease in the density of M longicarpus, indicating that their intake rate was limited by food availability. The estimated seasonal depletion of the stocks of Mictyris by the godwits was 88 % of the initial standing stock. Despite the virtual disappearance of Mictyris from sediment samples through the course of a non-breeding season, local densities of godwits did not change between October and March, implying that adequate rates of intake could be maintained throughout their residence period.
Resumo:
The small GTPases R-Ras and H-Ras are highly homologous proteins with contrasting biological properties, for example, they differentially modulate integrin affinity: H-Ras suppresses integrin activation in fibroblasts whereas R-Ras can reverse this effect of H-Ras. To gain insight into the sequences directing this divergent phenotype, we investigated a panel of H-Ras/R-Ras chimeras and found that sequences in the R-Ras hypervariable C-terminal region including amino acids 175-203 are required for the R-Ras ability to increase integrin activation in CHO cells; however, the proline-rich site in this region, previously reported to bind the adaptor protein Nck, was not essential for this effect. In addition, we found that the GTPase TC21 behaved similarly to R-Ras. Because the C-termini of Ras proteins can control their subcellular localization, we compared the localization of H-Ras and R-Ras. In contrast to H-Ras, which migrates out of lipid rafts upon activation, we found that activated R-Ras remained localized to lipid rafts. However, functionally distinct H-Ras/R-Ras chimeras containing different C-terminal R-Ras segments localized to lipid rafts irrespective of their integrin phenotype. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
Trans-membrane proteins of the p24 family are abundant, oligomeric proteins predominantly found in cis-Golgi membranes. They are not easily studied in vivo and their functions are controversial. We found that p25 can be targeted to the plasma membrane after inactivation of its canonical KKXX motif (KK to SS, p25SS), and that p25SS causes the co-transport of other p24 proteins beyond the Golgi complex, indicating that wild-type p25 plays a crucial role in retaining p24 proteins in cis-Golgi membranes. We then made use of these observations to study the intrinsic properties of these proteins, when present in a different membrane context. At the cell surface, the p25SS mutant segregates away from both the transferrin receptor and markers of lipid rafts, which are enriched in cholesterol and glycosphingolipids. This suggests that p25SS localizes to, or contributes to form, specialized membrane domains, presumably corresponding to oligomers of p25SS and other p24 proteins. Once at the cell surface, p25SS is endocytosed, together with other p24 proteins, and eventually accumulates in late endosomes, where it remains confined to well-defined membrane regions visible by electron microscopy. We find that this p25SS accumulation causes a concomitant accumulation of cholesterol in late endosomes, and an inhibition of their motility - two processes that are functionally linked. Yet, the p25SS-rich regions themselves seem to-exclude not only Lamp1 but also accumulated cholesterol. One may envision that p25SS accumulation, by excluding cholesterol from oligomers, eventually overloads neighboring late endosomal membranes with cholesterol beyond their capacity (see Discussion). In any case, our data show that p25 and presumably other p24 proteins are endowed with the intrinsic capacity to form highly specialized domains that control membrane composition and dynamics. We propose that p25 and other p24 proteins control the fidelity of membrane transport by maintaining cholesterol-poor membranes in the Golgi complex.
Resumo:
One of the major regulators of mitosis in somatic cells is cdc25B. cdc25B is tightly regulated at multiple levels. The final activation step involves the regulated binding of 14-3-3 proteins. Previous studies have demonstrated that Ser-323 is a primary 14-3-3 binding site in cdc25B, which influences its activity and cellular localization. 14-3-3 binding to this site appeared to interact with the N-terminal domain of cdc25B to regulate its activity. The presence of consensus 14-3-3 binding sites in the N-terminal domain suggested that the interaction is through direct binding of the 14-3-3 dimer to sites in the N-terminal domain. We have identified Ser-151 and Ser-230 in the N-terminal domain as functional 14-3-3 binding sites utilized by cdc25B in vivo. These low affinity sites cooperate to bind the 14-3-3 dimer bound to the high affinity Ser-323 site, thus forming an intramolecular bridge that constrains cdc25B structure to prevent access of the catalytic site. Loss of 14-3-3 binding to either N-terminal site relaxes cdc25B structure sufficiently to permit access to the catalytic site, and the nuclear export sequence located in the N-terminal domain. Mutation of the Ser-323 site was functionally equivalent to the mutation of all three sites, resulting in the complete loss of 14-3-3 binding, increased access of the catalytic site, and access to nuclear localization sequence.
Resumo:
This paper presents a large amplitude vibration analysis of pre-stressed functionally graded material (FGM) laminated plates that are composed of a shear deformable functionally graded layer and two surface-mounted piezoelectric actuator layers. Nonlinear governing equations of motion are derived within the context of Reddy's higher-order shear deformation plate theory to account for transverse shear strain and rotary inertia. Due to the bending and stretching coupling effect, a nonlinear static problem is solved first to determine the initial stress state and pre-vibration deformations of the plate that is subjected to uniform temperature change, in-plane forces and applied actuator voltage. By adding an incremental dynamic state to the pre-vibration state, the differential equations that govern the nonlinear vibration behavior of pre-stressed FGM laminated plates are derived. A semi-analytical method that is based on one-dimensional differential quadrature and Galerkin technique is proposed to predict the large amplitude vibration behavior of the laminated rectangular plates with two opposite clamped edges. Linear vibration frequencies and nonlinear normalized frequencies are presented in both tabular and graphical forms, showing that the normalized frequency of the FGM laminated plate is very sensitive to vibration amplitude, out-of-plane boundary support, temperature change, in-plane compression and the side-to-thickness ratio. The CSCF and CFCF plates even change the inherent hard-spring characteristic to soft-spring behavior at large vibration amplitudes. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we examine the postbuckling behavior of functionally graded material FGM rectangular plates that are integrated with surface-bonded piezoelectric actuators and are subjected to the combined action of uniform temperature change, in-plane forces, and constant applied actuator voltage. A Galerkin-differential quadrature iteration algorithm is proposed for solution of the non-linear partial differential governing equations. To account for the transverse shear strains, the Reddy higher-order shear deformation plate theory is employed. The bifurcation-type thermo-mechanical buckling of fully clamped plates, and the postbuckling behavior of plates with more general boundary conditions subject to various thermo-electro-mechanical loads, are discussed in detail. Parametric studies are also undertaken, and show the effects of applied actuator voltage, in-plane forces, volume fraction exponents, temperature change, and the character of boundary conditions on the buckling and postbuckling characteristics of the plates. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
A method is presented for calculating the currents and winding patterns required to design independent zonal and tesseral shim coils for magnetic resonance imaging. Both actively shielded and unshielded configurations are considered, and the region of interest can be located asymmetrically with respect to the coil's length. Streamline, target-field and Fourier-series methods are utilized. The desired target-field is specified at two cylindrical radii, on and inside a circular conducting cylinder of length 2L and radius a. The specification is over some asymmetric portion pL < z < qL of the coil's length (-1 < p < q < 1). Arbitrary functions are used in the outer sections, -L < z < pL and qL < z < L, to ensure continuity of the magnetic field across the entire length of the coil. The entire field is then periodically extended as a half-range cosine Fourier series about either end of the coil. The resultant Fourier coefficients are then substituted into the Fourier-series expressions for the internal and external magnetic fields, and current densities and stream functions on both the primary coil and shield. A contour plot of the stream function directly gives the required coil winding patterns. Spherical harmonic analysis and shielding analysis on field calculations from a ZX shim coil indicate that example designs and theory are well matched.
Resumo:
This paper conducts a dynamic stability analysis of symmetrically laminated FGM rectangular plates with general out-of-plane supporting conditions, subjected to a uniaxial periodic in-plane load and undergoing uniform temperature change. Theoretical formulations are based on Reddy's third-order shear deformation plate theory, and account for the temperature dependence of material properties. A semi-analytical Galerkin-differential quadrature approach is employed to convert the governing equations into a linear system of Mathieu-Hill equations from which the boundary points on the unstable regions are determined by Bolotin's method. Free vibration and bifurcation buckling are also discussed as subset problems. Numerical results are presented in both dimensionless tabular and graphical forms for laminated plates with FGM layers made of silicon nitride and stainless steel. The influences of various parameters such as material composition, layer thickness ratio, temperature change, static load level, boundary constraints on the dynamic stability, buckling and vibration frequencies are examined in detail through parametric studies.
Resumo:
Forest fires are suggested as a potential and significant source of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs), even though no studies to date provide sufficient evidence to confirm forest fires as a source of PCDD/Fs. Recent investigations in Gueensland, Australia have identified a widespread contamination of PCDDs (in particular OND) in soils and sediments in the coastal region from an unknown source of PCDD/Fs. Queensland is predominately rural; it has few known anthropogenic sources of PCDD/Fs, whereas forest fires are a frequent occurrence. This study was conducted to assess forest fires as a potential source of the unknown PCDD/F contamination in Queensland. A combustion experiment was designed to assess the overall mass of PCDD/Fs before and after a simulated forest fire. The results from this study did not identify an increase in Sigma-PCDD/Fs or OCDD after the combustion process. However, specific non-2,3,7,8 substituted lower chlorinated PCDD/Fs were elevated after the combustion process, suggesting formation from a precursor. The results from this study indicate that forest fires are unlikely to be the source of the unknown PCDD contamination in Gueensland, rather they are a key mechanism for the redistribution of PCDD/Fs from existing sources and precursors.
Resumo:
This study investigated the role of beta subunits in the activation of alphabeta heteromeric glycine receptor (GlyR) chloride channels recombinantly expressed in HEK293 cells. The approach involved incorporating mutations into corresponding positions in alpha and beta subunits and comparing their effects on receptor function. Although cysteine-substitution mutations to residues in the N-terminal half of the alpha subunit M2-M3 loop dramatically impaired the gating efficacy, the same mutations exerted little effect when incorporated into corresponding positions of the beta subunit. Furthermore, although the alpha subunit M2-M3 loop cysteines were modified by a cysteine-specific reagent, the corresponding beta subunit cysteines showed no evidence of reactivity. These observations suggest structural or functional differences between alpha and beta subunit M2-M3 loops. In addition, a threonine-->leucine mutation at the 9' position in the beta subunit M2 pore-lining domain dramatically increased the glycine sensitivity. By analogy with the effects of the same mutation in other ligand-gated ion channels, it was concluded that the mutation affected the GlyR activation mechanism. This supports the idea that the GlyR beta subunit is involved in receptor gating. In conclusion, this study demonstrates that beta subunits contribute to the activation of the GlyR, but that their involvement in this process is significantly different to that of the alpha subunit.
Resumo:
Chiral resolution of the cobalt cage complexes [Co(diNOsar)](3+) and [Co(diAMsarH(2))](5+) have been achieved by selective crystallization with the anion bis-mu-(R),(R)-tartratodiantimonate(III) ([Sb-2(R,R-tart)(2)](2-)) and also by column chromatography with Na-2[Sb-2(R, R-tart)(2)] as eluent. The X-ray crystal structures of Lambda-[ Co(diNOsar)][Sb-2(R, R-tart)(2)] Cl . 7H(2)O and Delta-[Co(diAMsarH(2))][Sb-2(R, R-tart)(2)](2)Cl . 14H(2)O are reported, which reveal an unexpected reversal of chiral discrimination when the cage substituent is changed from nitro (Lambda-enantiomer) to ammonio (Delta-enantiomer) and shows that the ammonio- substituted cage is capable of forming a three-point hydrogen-bonding interaction with each complex anion, whereas the nitro analogue can only form two hydrogen bonds with each [Sb-2(R, R-tart)(2)](2-) anion. During cation exchange chromatography of the racemic cobalt cage complexes with Na-2[Sb-2(R, R-tart)(2)] as eluent, Lambda-[Co(diNOsar)](3+) elutes first, which implies a tighter ion pairing interaction than for the Delta-enantiomer. On the other hand, Delta-[Co(diAMsarH(2))](5+) elutes first during chromatography under identical conditions, which is also consistent with a preferred outer-sphere complex formed between Delta-[Co(diAMsarH(2))](5+) and [Sb-2(R, R-tart)(2)](2-) relative to Lambda-[Co(diAMsarH(2))](5+) and [Sb-2(R,R-tart)(2)](2-).
Resumo:
The crystal structures of a pair of cis and trans isomers of the macrocyclic chloropentaamine title complex, as their tetrachlorozincate(II) salts, [CoCl(C11H27N5)][ZnCl4], are reported. The two distinct isomeric forms lead to significant variations in the Co-N bond lengths and, furthermore, hydrogen bonding between the complex ions is influenced by the folded (cis) or planar (trans) conformations of the coordinated ligand.