151 resultados para Biology, Molecular|Biology, Cell|Biology, Microbiology
Resumo:
Cell-surface proteoglycans have been known to be involved in many functions including interactions with components of the extracellular microenvironment, and act as co-receptors which bind and modify the action of various growth factors and cytokines. The purpose of this study was to determine the regulation by growth factors and cytokines on cell-surface proteoglycan gene expression in cultured human periodontal ligament (PDL) cells. Subconfluent, quiescent PDL cells were treated with various concentrations of serum, bFGF, PDGF-BB, TGF-beta1, IL-1 beta, and IFN-gamma. RT-PCR technique was used, complemented with Northern blot for syndecan-1, to examine the effects of these agents on the mRNA expression of five cell-surface proteoglycans (syndecan-1, syndecan-2, syndecan-4, glypican and betaglycan). Syndecan-1 mRNA levels increased in response to serum, bFGF and PDGF-BB, but decreased in response to TGF-beta1, IL-1 beta and IFN-gamma. In contrast, syndecan-2 mRNA levels were upregulated by TCF-beta1 and IL-1 beta stimulation, but remained unchanged with the other agents. Betaglycan gene expression decreased in response to serum, but was upregulated by TCF-beta1 and unchanged by the other stimulants. Additionally, syndecan-4 and glypican were not significantly altered in response to the regulator molecules studied, with the exception that glypican is decreased in response to IFN-gamma. These data demonstrate that the gene expression of the five cell-surface proteoglycans studied is differentially regulated in PDL cells lending support to the nation of distinct functions for these cell-surface proteoglycans. (C) 2001 Wiley-Liss, inc.
Resumo:
The K+ channel KCNQ1 (K(V)LQT1) is a voltage-gated K+ channel, coexpressed with regulatory subunits such as KCNE1 (IsK, mink) or KCNE3, depending on the tissue examined. Here, we investigate regulation and properties of human and rat KCNQ1 and the impact of regulators such as KCNE1 and KCNE3. Because the cystic fibrosis transmembrane conductance regulator (CFTR) has also been suggested to regulate KCNQ1 channels we studied the effects of CFTR on KCNQ1 in Xenopus oocytes, Expression of both human and rat KCNQ1 induced time dependent K+ currents that were sensitive to Ba2+ and 293B. Coexpression with KCNE1 delayed voltage activation, while coexpression with KCNE3 accelerated current activation. KCNQ1 currents were activated by an increase in intracellular cAMP, independent of coexpression with KCNE1 or KCNE3. cAMP dependent activation was abolished in N-terminal truncated hKCNQ1 but was still detectable after deletion of a single PKA phosphorylation motif. In the presence but not in the absence of KCNE1 or KCNE3, K+ currents were activated by the Ca2+ ionophore ionomycin. Coexpression of CFTR with either human or rat KCNQ1 had no impact on regulation of KCNQ1 K+ currents by cAMP but slightly shifted the concentration response curve for 293B. Thus, KCNQ1 expressed in Xenopus oocytes is regulated by cAMP and Ca2+ but is not affected by CFTR.
Resumo:
Intracellular trafficking of retroviral RNAs is a potential mechanism to target viral gene expression to specific regions of infected cells. Here we show that the human immunodeficiency virus type 1 (HIV-1) genome contains two sequences similar to the hnRNP A2 response element (A2RE), a cis-acting RNA trafficking sequence that binds to the trans-acting trafficking factor, hnRNP A2, and mediates a specific RNA trafficking pathway characterized extensively in oligodendrocytes. The two HIV-1 sequences, designated A2RE-1, within the major homology region of the gag gene, and A2RE-2, in a region of overlap between the vpr and tat genes, both bind to hnRNP A2 in vitro and are necessary and sufficient for RNA transport in oligodendrocytes in vivo. A single base change (A8G) in either sequence reduces hnRNP A2 binding and, in the case of A2RE-2, inhibits RNA transport. A2RE-mediated RNA transport is microtubule and hnRNP A2 dependent. Differentially labelled gag and vpr RNAs, containing A2RE-1 and A2RE-2, respectively, coassemble into the same RNA trafficking granules and are cotransported to the periphery of the cell. tat RNA, although it contains A2RE-2, is not transported as efficiently as vpr RNA. An A2RE/hnRNP A2-mediated trafficking pathway for HIV RNA is proposed, and the role of RNA trafficking in targeting HIV gene expression is discussed.
Resumo:
Published results on the inhibitory effects of small cosolutes on adenosine deamination by adenosine deaminase [Kurz. L. C.. Weitkamp, E., and Frieden, C. (1987) Biochemistry 26, 3027-3032; Dzingeleski, G., and Wolfenden, R. (1993) Biochemistry 32, 9143 -9147] have been reexamined. Results for sucrose, dioxane, methanol, and ethanol are shown to be qualitatively consistent with thermodynamic interpretation in terms of molecular crowding effects arising from the occurrence of a minor increase in enzyme volume and/or asymmetry during the kinetic reaction-a conformational transition that could be either preexisting or ligand induced. Direct evidence for the existence of the putative isomeric transition is provided by active enzyme gel chromatography on Sephadex G-100, which demonstrates a negative dependence of enzyme elution volume upon substrate concentration and is therefore consistent with substrate-mediated conformational changes that favor a larger (or more asymmetric) isomeric state of the enzyme. There are thus experimental grounds for adopting the present description of the inhibitory effects of unrelated cosolutes on the kinetics of adenosine deamination by adenosine deaminase in terms of thermodynamic nonideality.
Resumo:
The suitability of sedimentation equilibrium for characterizing the self-association of muscle glycogen phosphorylase b has been reappraised. Whereas sedimentation equilibrium distributions for phosphorylase b in 40 mM Hepes buffer (pH 6.8) supplemented with 1 mM AMP signify a lack of chemical equilibrium attainment, those in buffer supplemented additionally with potassium sulfate conform with the requirements of a dimerizing system in chemical as we:ll as sedimentation equilibrium. Because the rate of attainment of chemical equilibrium under the former conditions is sufficiently slow to allow resolution of the dimeric and tetrameric enzyme species by sedimentation velocity, this procedure has been used to examine the effects of thermodynamic nonideality arising from molecular crowding try trimethylamine N-oxide on the self-association behaviour of phosphorylase b. In those terms the marginally enhanced extent of phosphorylase b self-association observed in the presence of high concentrations of the cosolute is taken to imply that the effects of thermodynamic nonideality on the dimer-tetramer equilibrium are being countered by those displacing the T reversible arrow R isomerization equilibrium for dimer towards the smaller, nonassociating T state. Because the R state is the enzymically active form, an inhibitory effect is the predicted consequence of molecular crowding by high concentrations of unrelated solutes. Thermodynamic nonideality thus provides an alternative explanation for the inhibitory effects of high concentrations of glycerol, sucrose and ethylene glycol on phosphorylase b activity, phenomena that have been attributed to extremely weak interaction of these cryoprotectants with the T state of the enzyme.
Resumo:
Epstein-Barr virus (EBV)-encoded nuclear antigen 1 (EBNA1) includes a unique glycine-alanine repeat domain that inhibits the endogenous presentation of cytotoxic T lymphocyte (CTL) epitopes through the class I pathway by blocking proteasome-dependent degradation of this antigen. This immune evasion mechanism has been implicated in the pathogenesis of EBV-associated diseases. Here, we show that cotranslational ubiquitination combined with N-end rule targeting enhances the intracellular degradation of EBNA1, thus resulting in a dramatic reduction in the half-life of the antigen. Using DNA expression vectors encoding different forms of ubiquitinated EBNA1 for in vivo studies revealed that this rapid degradation, remarkably, leads to induction of a very strong CTL response to an EBNA1-specific CTL epitope. Furthermore, this targeting also restored the endogenous processing of HLA class I-restricted CTL epitopes within EBNA1 for immune recognition by human EBV-specific CTLs. These observations provide, for the first time, evidence that the glycine-alanine repeat-mediated proteasomal block on EBNA1 can be reversed by specifically targeting this antigen for rapid degradation resulting in enhanced CD8+ T cell-mediated recognition in vitro and in vivo.
Resumo:
An improved differential display technique was used to search for changes in gene expression in the superior frontal cortex of alcoholics, A cDNA fragment was retrieved and cloned. Further sequence of the cDNA was determined from 5' RACE and screening of a human brain cDNA library. The gene was named hNP22 (human neuronal protein 22). The deduced protein sequence of hNP22 has an estimated molecular mass of 22.4 kDa with a putative calcium-binding site, and phosphorylation sites for casein kinase II and protein kinase C. The deduced amino acid sequence of hNP22 shares homology (from 67% to 42%) with four other proteins, SM22 alpha, calponin, myophilin and mp20. Sequence homology suggests a potential interaction of hNP22 with cytoskeletal elements. hNP22 mRNA was expressed in various brain regions but in alcoholics, greater mRNA expression occurred in the superior frontal cortex, but not in the primary motor cortex or cerebellum. The results suggest that hNP22 may have a role in alcohol-related adaptations and may mediate regulatory signal transduction pathways in neurones.
Resumo:
SOX9 is a transcription factor that plays a key role in chondrogenesis, Aggrecan is one of the major structural components in cartilage; however, the molecular mechanism of aggrecan gene regulation has not yet been fully elucidated, TC6 is a clonal chondrocytic cell line derived from articular cartilage, The purpose of this study was to examine whether SOX9 modulates aggrecan gene expression and to further identify molecules that regulate Sox9 expression in TC6 cells. SOX9 overexpression in TC6 cells enhanced by similar to 3-fold the transcriptional activity of the AgCAT-8 construct containing S-kilobase (kb) promoter/first exon/first intron fragments of the aggrecan gene. SOX9 enhancement of aggrecan promoter activity was lost when we deleted a 4.5-kb fragment from the 3'-end of the 8-kb fragment corresponding to the region including the first intron, In TC6 cells, SOX9 enhanced the transcriptional activity of a reporter construct containing the Sry/Sox consensus sequence >10-fold. SOX9 enhancement of aggrecan gene promoter activity and SOX9 transactivation through the Sry/Sox consensus sequence were not observed in osteoblastic osteosarcoma cells (ROS17/2.8), indicating the dependence on the cellular background. Northern blot analysis indicated that TC6 cells constitutively express Sox9 mRNA at relatively low levels. To examine regulation of Sox9 gene expression, we investigated the effects of calciotropic hormones and cytokines, Among these, retinoic acid (RA) specifically enhanced Sox9 mRNA expression in TC6 cells. The basal levels of Sox9 expression and its enhancement by RA were observed similarly at both permissive (33 degrees C) and nonpermissive (39 degrees C) temperatures. Furthermore, RA treatment enhanced the transcriptional activity of a reporter construct containing the Sry/Sox consensus sequence in TC6 cells. Moreover, RA treatment also enhanced the transcriptional activity of another reporter construct containing the enhancer region of the type II procollagen gene in TC6 cells. These observations indicate that SOX9 enhances aggrecan promoter activity and that its expression is up-regulated by RA in TC6 cells.
A high efficient and consistent method for harvesting large volumes of high-titre lentiviral vectors
Resumo:
Lentiviral vectors pseudotyped with vesicular stomatitis virus glycoprotein (VSV-G) are emerging as the vectors of choice for in vitro and in vivo gene therapy studies. However, the current method for harvesting lentivectors relies upon ultracentrifugation at 50 000 g for 2 h. At this ultra-high speed, rotors currently in use generally have small volume capacity. Therefore, preparations of large volumes of high-titre vectors are time-consuming and laborious to perform. In the present study, viral vector supernatant harvests from vector-producing cells (VPCs) were pre-treated with various amounts of poly-L-lysine (PLL) and concentrated by low speed centrifugation. Optimal conditions were established when 0.005% of PLL (w/v) was added to vector supernatant harvests, followed by incubation for 30 min and centrifugation at 10 000 g for 2 h at 4 degreesC. Direct comparison with ultracentrifugation demonstrated that the new method consistently produced larger volumes (6 ml) of high-titre viral vector at 1 x 10(8) transduction unit (TU)/ml (from about 3000 ml of supernatant) in one round of concentration. Electron microscopic analysis showed that PLL/viral vector formed complexes, which probably facilitated easy precipitation at low-speed concentration (10 000 g), a speed which does not usually precipitate viral particles efficiently. Transfection of several cell lines in vitro and transduction in vivo in the liver with the lentivector/PLL complexes demonstrated efficient gene transfer without any significant signs of toxicity. These results suggest that the new method provides a convenient means for harvesting large volumes of high-titre lentivectors, facilitate gene therapy experiments in large animal or human gene therapy trials, in which large amounts of lentiviral vectors are a prerequisite.
Resumo:
The checkpoint kinase Chk2 has a key role in delaying cell cycle progression in response to DNA damage. Upon activation by low-dose ionizing radiation (IR), which occurs in an ataxia telangiectasia mutated (ATM)dependent manner, Chk2 can phosphorylate the mitosis-inducing phosphatase Cdc25C on an inhibitory site, blocking entry into mitosis, and p53 on a regulatory site, causing G, arrest. Here we show that the ATM-dependent activation of Chk2 by gamma- radiation requires Nbs1, the gene product involved in the Nijmegen breakage syndrome (NBS), a disorder that shares with AT a variety of phenotypic defects including chromosome fragility, radiosensitivity, and radioresistant DNA synthesis. Thus, whereas in normal cells Chk2 undergoes a time-dependent increased phosphorylation and induction of catalytic activity against Cdc25C, in NBS cells null for Nbs1 protein, Chk2 phosphorylation and activation are both defective. Importantly, these defects in NBS cells can be complemented by reintroduction of wild-type Nbs1, but neither by a carboxy-terminal deletion mutant of Nbs1 at amino acid 590, unable to form a complex with and to transport Mre11 and Rad50 in the nucleus, nor by an Nbs1 mutated at Ser343 (S343A), the ATM phosphorylation site. Chk2 nuclear expression is unaffected in NBS cells, hence excluding a mislocalization as the cause of failed Chk2 activation in Nbs1-null cells, interestingly, the impaired Chk2 function in NBS cells correlates with the inability, unlike normal cells, to stop entry into mitosis immediately after irradiation, a checkpoint abnormality that can be corrected by introduction of the wild-type but not the S343A mutant form of Nbs1, Altogether, these findings underscore the crucial role of a functional Nbs1 complex in Chk2 activation and suggest that checkpoint defects in NBS cells may result from the inability to activate Chk2.
Resumo:
Cell suspension cultures are useful for a wide range of biochemical and physiological studies, yet their production can be technically demanding and often unreliable. Here we describe a protocol for producing Arabidopsis cell suspension cultures that is reliable and easy to use.
Resumo:
Using differential display-polymerase chain reaction, we identified a novel gene sequence, designated solid tumor-associated gene 1 (STAG1), that is upregulated in renal cell carcinoma (RCC). The full-length cDNA (4839 bp) encompassed the recently reported androgen-regulated prostatic cDNA PMEPA1 and so we refer to this gene as STAG1/PMEPA1, Two STAG1/PMEPA1 mRNA transcripts of approximately 2.7 an 5 kb, with identical coding regions but variant 3' untranslated regions, were predominantly expressed in normal prostate tissue and at lower levels in the ovary. The expression of this gene was upregulated in 87% of RCC samples and also was upregulated in stomach and rectal adenocarcinomas. In contrast, STAG1/PMEPA1 expression was barely detectable in leukemia and lymphoma samples, Analysis of expressed sequence tag databases showed that STAG1/PMEPA1 also was expressed in pancreatic, endometrial, and prostatic adenocarcinomas. The STAG1/PMEPA1 cDNA encodes a 287-amino-acid protein containing a putative transmembrane domain and motifs that suggest that it may bind src homology 3- and tryptophan tryptophan domain-containing proteins. This protein shows 67% identity to the protein encoded by the chromosome 18 open reading frame 1 gene. Translation of STAG1/PMEPA1 mRNA in vitro showed two products of 36 and 39 kDa, respectively, suggesting that translation may initiate at more than one site. Comparison to genomic clones showed that STAG1/PMEPA1 was located on chromosome 20q13 between microsatellite markers D20S183 and D20S173 and spanned four exons and three introns. The upregulation of this gene in several solid tumors indicated that it may play an important role in tumorigenesis. (C) 2001 Wiley-Liss, Inc.
Resumo:
E-cadherin is a major adherens junction protein of epithelial cells, with a central role in cell-cell adhesion and cell polarity. Newly synthesized E-cadherin is targeted to the basolateral cell surface, We analyzed targeting information in the cytoplasmic tail of E-cadherin by utilizing chimeras of E-cadherin fused to the ectodo- main of the interleukin-2 alpha (IL-2 alpha) receptor expressed in Madin-Darby canine kidney and LLC-PK1 epithelial cells, Chimeras containing the full-length or membrane-proximal half of the E-cadherin cytoplasmic tail were correctly targeted to the basolateral domain. Sequence analysis of the membrane-proximal tail region revealed the presence of a highly conserved dileucine motif, which was analyzed as a putative targeting signal by mutagenesis. Elimination of this motif resulted in the loss of Tac/E-cadherin basolateral localization, pinpointing this dileucine signal as being both necessary and sufficient for basolateral targeting of E-cadherin, Truncation mutants unable to bind beta -catenin were correctly targeted, showing, contrary to current understanding, that beta -catenin is not required for basolateral trafficking. Our results also provide evidence that dileucine mediated targeting is maintained in UC-PK, cells despite the altered polarity of basolateral proteins with tyrosine-based signals in this cell line, These results provide the first direct insights into how E-cadherin is targeted to the basolateral membrane.