109 resultados para Application distribuée
Unexpected clobetasol propionate profile in human stratum corneum after topical application in vitro
Resumo:
Purpose. The validity of using drug amount-depth profiles in stratum corneum to predict uptake of clobetasol propionate into stratum corneum and its transport into deeper skin layers was investigated. Methods. In vitro diffusion experiments through human epidermis were carried out using Franz-type glass diffusion cells. A saturated solution of clobetasol propionate in 20% (V/V) aqueous propylene glycol was topically applied for 48 h. Steady state flux was calculated from the cumulative amount of drug permeated vs. time profile. Epidermal partitioning was conducted by applying a saturated drug solution to both sides of the epidermis and allowing time to equilibrate. The tape stripping technique was used to define drug concentration-depth profiles in stratum corneum for both the diffusion and equilibrium experiments. Results. The concentration-depth profile of clobetasol propionate in stratum corneum for the diffusion experiment is biphasic. A logarithmic decline of the drug concentration over the first four to five tape strips flattens to a relatively constant low concentration level in deeper layers. The drug concentration-depth profile for the equilibrium studies displays a similar shape. Conclusions. The shape of the concentration-depth profile of clobetasol propionate is mainly because of the variable partitioning coefficient in different stratum corneum layers.
Resumo:
We consider pure continuous variable entanglement with non-equal correlations between orthogonal quadratures. We introduce a simple protocol which equates these correlations and in the process transforms the entanglement onto a state with the minimum allowed number of photons. As an example we show that our protocol transforms, through unitary local operations, a single squeezed beam split on a beam splitter into the same entanglement that is produced when two squeezed beams are mixed orthogonally. We demonstrate that this technique can in principle facilitate perfect teleportation utilizing only one squeezed beam.
Resumo:
This paper describes the modification of a two-dimensional finite element long wave hydrodynamic model in order to predict the net current and water levels attributable to the influences of waves. Tests examine the effects of the application of wave induced forces, including comparisons to a physical experiment. An example of a real river system is presented with comparisons to measured data, which demonstrate the importance of simulating the combined effects of tides and waves upon hydrodynamic behavior. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Despite its widespread use, the Coale-Demeny model life table system does not capture the extensive variation in age-specific mortality patterns observed in contemporary populations, particularly those of the countries of Eastern Europe and populations affected by HIV/AIDS. Although relational mortality models, such as the Brass logit system, can identify these variations, these models show systematic bias in their predictive ability as mortality levels depart from the standard. We propose a modification of the two-parameter Brass relational model. The modified model incorporates two additional age-specific correction factors (gamma(x), and theta(x)) based on mortality levels among children and adults, relative to the standard. Tests of predictive validity show deviations in age-specific mortality rates predicted by the proposed system to be 30-50 per cent lower than those predicted by the Coale-Demeny system and 15-40 per cent lower than those predicted using the original Brass system. The modified logit system is a two-parameter system, parameterized using values of l(5) and l(60).