116 resultados para Amino acid receptor blocking agent
Resumo:
In the honeybee the cAMP-dependent signal transduction cascade has been implicated in processes underlying learning and memory, The cAMP-dependent protein kinase (PKA) is the major mediator of cAMP action. To characterize the PKA system in the honeybee brain we cloned a homologue of a PKA catalytic subunit from the honeybee,The deduced amino acid sequence shows 80-94% identity with catalytic subunits of PKA from Drosophila melanogaster, Aplysia californica and mammals. The corresponding gene is predominantly expressed in the mushroom bodies, a structure that is involved in learning and memory processes. However, expression can also be found in the antennal and optic lobes,The level of expression varies within all three neuropiles.
Resumo:
The checkpoint kinase Chk2 has a key role in delaying cell cycle progression in response to DNA damage. Upon activation by low-dose ionizing radiation (IR), which occurs in an ataxia telangiectasia mutated (ATM)dependent manner, Chk2 can phosphorylate the mitosis-inducing phosphatase Cdc25C on an inhibitory site, blocking entry into mitosis, and p53 on a regulatory site, causing G, arrest. Here we show that the ATM-dependent activation of Chk2 by gamma- radiation requires Nbs1, the gene product involved in the Nijmegen breakage syndrome (NBS), a disorder that shares with AT a variety of phenotypic defects including chromosome fragility, radiosensitivity, and radioresistant DNA synthesis. Thus, whereas in normal cells Chk2 undergoes a time-dependent increased phosphorylation and induction of catalytic activity against Cdc25C, in NBS cells null for Nbs1 protein, Chk2 phosphorylation and activation are both defective. Importantly, these defects in NBS cells can be complemented by reintroduction of wild-type Nbs1, but neither by a carboxy-terminal deletion mutant of Nbs1 at amino acid 590, unable to form a complex with and to transport Mre11 and Rad50 in the nucleus, nor by an Nbs1 mutated at Ser343 (S343A), the ATM phosphorylation site. Chk2 nuclear expression is unaffected in NBS cells, hence excluding a mislocalization as the cause of failed Chk2 activation in Nbs1-null cells, interestingly, the impaired Chk2 function in NBS cells correlates with the inability, unlike normal cells, to stop entry into mitosis immediately after irradiation, a checkpoint abnormality that can be corrected by introduction of the wild-type but not the S343A mutant form of Nbs1, Altogether, these findings underscore the crucial role of a functional Nbs1 complex in Chk2 activation and suggest that checkpoint defects in NBS cells may result from the inability to activate Chk2.
Resumo:
Nuclear receptors are a superfamily of metazoan transcription factors that have been shown to be involved in a wide range of developmental and physiological processes. A PCR-based survey of genomic DNA and developmental cDNAs from the ascidian Herdmania identifies eight members of this multigene family. Sequence comparisons and phylogenetic analyses reveal that these ascidian nuclear receptors are representative of five of the six previously defined nuclear receptor subfamilies and are apparent homologues of retinoic acid [NR1B], retinoid X [NR2B], peroxisome proliferator-activated [NR1C], estrogen related [NR3B], neuron-derived orphan (NOR) [NR4A3], nuclear orphan [NR4A], TR2 orphan [NR2C1] and COUP orphan [NR2F3] receptors. Phylogenetic analyses that include the ascidian genes produce topologically distinct trees that suggest a redefinition of some nuclear receptor subfamilies. These trees also suggest that extensive gene duplication occurred after the vertebrates split from invertebrate chordates. These ascidian nuclear receptor genes are expressed differentially during embryogenesis and metamorphosis.
Resumo:
Peroxisome proliferator-activated receptor (PPAR) alpha is a ligand-activated transcription factor that has been linked with rodent hepatocarcinogenesis. It has been suggested that PPARalpha mRNA expression levels are an important determinant of rodent hepatic tumorigenicity. Previous work in rat mammary gland epithelial cells showed significantly increased PPARalpha mRNA expression in carcinomas, suggesting the possible role of this isoform in rodent mammary gland carcinogenesis. In this study we sought to determine whether PPARalpha is expressed and dynamically regulated in human breast cancer MCF-7 and MDA-MB-231 cells. Having established the presence of PPARalpha in both cell types, we then examined the consequence of PPARa activation, by its ligands Wy-14,643 and clofibrate, on proliferation. With real-time reverse transcriptase-polymerase chain reaction, we showed that PPARalpha mRNA was dynamically regulated in MDA-MB-231 cells and that PPARalpha activation significantly increased proliferation of the cell line. In contrast, PPARalpha expression in MCF-7 cells did not change with proliferation during culture and was present at significantly lower levels than in MDA-MB-231 cells. However, PPARalpha ligand activation still significantly increased the proliferation of MCF-7 cells. The promotion of proliferation in breast cancer cell lines following PPARalpha activation was in stark contrast to the effects of PPARgamma-activating ligands that decrease proliferation in human breast cancer cells. our results established the presence of PPARalpha in human breast cancer cell lines and showed for the first time that activation of PPARalpha in human breast cancer cells promoted proliferation. Hence, this pathway may be significant in mammary gland tumorigenesis. (C) 2002 Wiley-Liss, Inc.
Resumo:
The alpha-conotoxin MII is a 16 amino acid long peptide toxin isolated from the marine snail, Conus magus. This toxin has been found to be a highly selective and potent inhibitor of neuronal nicotinic acetylcholine receptors of the subtype alpha3beta2. To improve the bioavailability of this peptide, we have coupled to the N-terminus of conotoxin MII, 2-amino-D,L-dodecanoic acid (Laa) creating a lipidic linear peptide which was then successfully oxidised to produce the correctly folded conotoxin MII construct.
Resumo:
It has been suggested from a previous study in our laboratory that differences in the pharmacology of the species variants of the noradrenaline transporter (NET) are the result of four non-conservative amino acid exchanges from the total of 26 amino acids that are divergent between the rat NET (rNET) and human NET (hNET). The aim of this study was to examine the effects of changing the rNET at each of these four amino acid residues, which markedly alter local charge distribution, to the amino acid found in hNET. Site-directed mutagenesis was used to create mutant cDNAs from rNET cDNA. The mutant NETs (rK71), rE62K, rK375N and rR612Q), rNET and hNET were expressed in transiently transfected COS-7 cells to determine the effects of the mutations on the differing pharmacological properties of the species variants. The ratios of V-max for noradrenaline uptake and B-max for nisoxetine binding (which are a measure of the turnover number of the transporter, i.e. the number of transport cycles per min) were greater for rNET and rR612Q than for hNET, rK71), rE62K and rK375N. The K-m of noradrenaline was lower for hNET, rK713, rE62K and rK375N than for rNET or rR612Q. There were no differences between the K-i values for inhibition of noradrenaline uptake by nisoxetine for rNET, hNET or the mutants, but the K-i values of cocaine were lower for hNET, rE62K and rR612Q than rNET or rK375N. Hence, the study showed that: (1) the aspartate 7. lysine 62 and asparagine 375 amino acid residues are important in determining the lower substrate translocation by hNET than rNET; (2) the aspartate 7 and lysine 62 residues in the N-terminus of hNET determine the higher affinities of substrates for the hNET than the rNET; and (3) the lysine 62 and glutamine 612 residues in the N- and C-termini, respectively, of hNET Lire determinants of the higher cocaine affinity for the hNET than rNET.
Resumo:
Our previous studies have shown that two distinct genotypes of Sindbis (SIN) virus occur in Australia. One of these, the Oriental/Australian type, circulates throughout most of the Australian continent, whereas the recently identified south-west (SW) genetic type appears to be restricted to a distinct geographic region located in the temperate south-west of Australia. We have now determined the complete nucleotide and translated amino acid sequences of a SW isolate of SIN virus (SW6562) and performed comparative analyses with other SIN viruses at the genomic level. The genome of SW6562 is 11,569 nucleotides in length, excluding the cap nucleotide and poly (A) tail. Overall this virus differs from the prototype SIN virus (strain AR339) by 23% in nucleotide sequence and 12.5% in amino acid sequence. Partial sequences of four regions of the genome of four SW isolates were determined and compared with the corresponding sequences from a number of SIN isolates from different regions of the World. These regions are the non-structural protein (nsP3), the E2 gene, the capsid gene, and the repeated sequence elements (RSE) of the 3'UTR. These comparisons revealed that the SW SIN viruses were more closely related to South African and European strains than to other Australian isolates of SIN virus. Thus the SW genotype of SIN virus may have been introduced into this region of Australia by viremic humans or migratory birds and subsequently evolved independently in the region. The sequence data also revealed that the SW genotype contains a unique deletion in the RSE of the 3'UTR region of the genome. Previous studies have shown that deletions in this region of the SIN genome can have significant effects on virus replication in mosquito and avian cells, which may explain the restricted distribution of this genotype of SIN virus.
Resumo:
Ichthyosporea is a recently recognized group of morphologically simple eukaryotes, many of which cause disease in aquatic organisms. Ribosomal RNA sequence analyses place Ichthyosporea near the divergence of the animal and fungal lineages, but do not allow resolution of its exact phylogenetic position. Some of the best evidence for a specific grouping of animals and fungi (Opisthokonta) has come from elongation factor 1alpha, not only phylogenetic analysis of sequences but also the presence or absence of short insertions and deletions. We sequenced the EF-1alpha gene from the ichthyosporean parasite Ichthyophonus irregularis and determined its phylogenetic position using neighbor-joining, parsimony and Bayesian methods. We also sequenced EF-1alpha genes from four chytrids to provide broader representation within fungi. Sequence analyses and the presence of a characteristic 12 amino acid insertion strongly indicate that I. irregularis is a member of Opisthokonta, but do not resolve whether I. irregularis is a specific relative of animals or of fungi. However, the EF-1alpha of I. irregularis exhibits a two amino acid deletion heretofore reported only among fungi. (C) 2003 Elsevier Science (USA). All rights reserved.
Resumo:
The newborns of mammals have a high folate demand, yet obtain adequate folate nutrition solely from their mothers' milk despite its low folate content. Milk folate is entirely bound by an excess of folate-binding protein (FBP), prompting speculation that FBP may affect the bioavailability of the limited folate supply. Previous research has shown that FBP-bound folic acid is more gradually absorbed, thereby reducing the peak plasma folate concentration and preventing loss into the urine. Natural folates are reduced derivatives of folic acid, with milk predominantly containing 5-methyltetrahydrofolate, yet little research has been carried out to determine the role of FBP in the bioavailability of reduced folates. We studied the effect of FBP on folate nutrition of rats in both single-dose and 4-wk feeding experiments. The effect of FBP was influenced by the presence of other milk components. FBP increased bioavailability of dietary folate when it was consumed with other whey proteins or with soluble casein. However, in the presence of acid-precipitated casein or a whey preparation enriched in lipids, bioavailability was decreased. These results highlight the difficulties of extrapolating from experimental results obtained using purified diets alone and of studying interactions among dietary components. They suggest that the addition of FBP-rich foods to folate-rich foods could enhance the bioavailability of natural folates, but that the outcome of such a combination would depend on interactions with other components of the diet.
Resumo:
delta-Atracotoxin-Ar1a (delta-ACTX-Ar1a) is the major polypeptide neurotoxin isolated from the venom of the male Sydney funnel-web spider, Atrax robustus. This neurotoxin targets both insect and mammalian voltage-gated sodium channels, where it competes with scorpion alpha-toxins for neurotoxin receptor site-3 to slow sodium-channel inactivation. Progress in characterizing the structure and mechanism of action of this toxin has been hampered by the limited supply of pure toxin from natural sources. In this paper, we describe the first successful chemical synthesis and oxidative refolding of the four-disulfide bond containing delta-ACTX-Ar1a. This synthesis involved solid-phase Boc chemistry using double coupling, followed by oxidative folding of purified peptide using a buffer of 2 M GdnHCl and glutathione/glutathiol in a 1:1 mixture of 2-propanol (pH 8.5). Successful oxidation and refolding was confirmed using both chemical and pharmacological characterization. Ion spray mass spectrometry was employed to confirm the molecular weight. H-1 NMR analysis showed identical chemical shifts for native and synthetic toxins, indicating that the synthetic toxin adopts the native fold. Pharmacological studies employing whole-cell patch clamp recordings from rat dorsal root ganglion neurons confirmed that synthetic delta-ACTX-Ar1a produced a slowing of the sodium current inactivation and hyperpolarizing shifts in the voltage-dependence of activation and inactivation similar to native toxin. Under current clamp conditions, we show for the first time that delta-ACTX-Ar1a produces spontaneous repetitive plateau potentials underlying the clinical symptoms seen during envenomation. This successful oxidative refolding of synthetic delta-ACTX-Ar1a paves the way for future structure-activity studies to determine the toxin pharmacophore.
Resumo:
This study investigated the role of beta subunits in the activation of alphabeta heteromeric glycine receptor (GlyR) chloride channels recombinantly expressed in HEK293 cells. The approach involved incorporating mutations into corresponding positions in alpha and beta subunits and comparing their effects on receptor function. Although cysteine-substitution mutations to residues in the N-terminal half of the alpha subunit M2-M3 loop dramatically impaired the gating efficacy, the same mutations exerted little effect when incorporated into corresponding positions of the beta subunit. Furthermore, although the alpha subunit M2-M3 loop cysteines were modified by a cysteine-specific reagent, the corresponding beta subunit cysteines showed no evidence of reactivity. These observations suggest structural or functional differences between alpha and beta subunit M2-M3 loops. In addition, a threonine-->leucine mutation at the 9' position in the beta subunit M2 pore-lining domain dramatically increased the glycine sensitivity. By analogy with the effects of the same mutation in other ligand-gated ion channels, it was concluded that the mutation affected the GlyR activation mechanism. This supports the idea that the GlyR beta subunit is involved in receptor gating. In conclusion, this study demonstrates that beta subunits contribute to the activation of the GlyR, but that their involvement in this process is significantly different to that of the alpha subunit.