241 resultados para Activated sludge system
Resumo:
The functional integrity of the immune system is essential for peripheral antinociception. Previous studies have demonstrated that immune cells elicit potent antinociception in inflamed tissues and that corticotropin-releasing factor-induced antinociception is significantly inhibited in animals that have undergone cyclosporin A (CsA)-induced immunosuppression. In this study, we examined the effect of a single bolus of CsA on inflammatory nociception. CsA-treated rats had substantially increased nociception compared with nonimmunosuppressed rats, consistent with a reduction in circulating and infiltrating lymphocytes. Furthermore, CsA-treated rats had inhibition of corticotropin-releasing factor-induced immune-derived antinociception, which was dose-dependently reversed by IV injection of concanavalin A-activated donor lymphocytes (1.0-7.0 X 10(6) cells/0.1 mL). In conclusion, our findings provided further evidence that opioid-containing immune cells are essential for peripheral analgesia. It is evident from these findings that control of inflammatory pain relies heavily on a functioning immune system.
Auxiliary subunit regulation of high-voltage activated calcium channels expressed in mammalian cells
Resumo:
The effects of auxiliary calcium channel subunits on the expression and functional properties of high-voltage activated (HVA) calcium channels have been studied extensively in the Xenopus oocyte expression system, but are less completely characterized in a mammalian cellular environment. Here, we provide the first systematic analysis of the effects of calcium channel beta and alpha(2)-delta subunits on expression levels and biophysical properties of three different types (Ca(v)1.2, Ca(v)2.1 and Ca(v)2.3) of HVA calcium channels expressed in tsA-201 cells. Our data show that Ca(v)1.2 and Ca(v)2.3 channels yield significant barium current in the absence of any auxiliary subunits. Although calcium channel beta subunits were in principle capable of increasing whole cell conductance, this effect was dependent on the type of calcium channel alpha(1) subunit, and beta(3) subunits altogether failed to enhance current amplitude irrespective of channel subtype. Moreover, the alpha(2)-delta subunit alone is capable of increasing current amplitude of each channel type examined, and at least for members of the Ca(v)2 channel family, appears to act synergistically with beta subunits. In general agreement with previous studies, channel activation and inactivation gating was regulated both by beta and by alpha(2)-delta subunits. However, whereas pronounced regulation of inactivation characteristics was seen with the majority of the auxiliary subunits, effects on voltage dependence of activation were only small (< 5 mV). Overall, through a systematic approach, we have elucidated a previously underestimated role of the alpha(2)-delta(1) subunit with regard to current enhancement and kinetics. Moreover, the effects of each auxiliary subunit on whole cell conductance and channel gating appear to be specifically tailored to subsets of calcium channel subtypes.
Resumo:
Adsorption of binary mixtures onto activated carbon Norit R1 for the system nitrogen-methane-carbon dioxide was investigated over the pressure range up to 15 MPa. A new model is proposed to describe the experimental data. It is based on the assumption that an activated carbon can be characterized by the distribution function of elements of adsorption volume (EAV) over the solid-fluid potential. This function may be evaluated from pure component isotherms using the equality of the chemical potentials in the adsorbed phase and in the bulk phase for each EAV. In the case of mixture adsorption a simple combining rule is proposed, which allows determining the adsorbed phase density and its composition in the EAV at given pressure and compositions of the bulk phase. The adsorbed concentration of each adsorbate is the integral of its density over the set of EAV. The comparison with experimental data on binary mixtures has shown that the approach works reasonably well. In the case of high-pressure binary mixture adsorption, when only total amount adsorbed was measured, the proposed model allows reliably determining partial amounts of the adsorbed components. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Adsorption of different aromatic compounds (two of them are electrolytes) onto an untreated activated carbon (F100) is investigated. The experimental isotherms are fitted into Langmuir homogenous and heterogeneous Model. Theoretical maximum adsorption capacities that are based on the BET surface area of the adsorbent cannot be close to the real value. The affinity and the heterogeneity of the adsorption system observed to be related to the pK(a) of the solutes. The maximum adsorption capacity (Q(max)) of activated carbon for each solute dependent on the molecular area as well as the type of functional group attached on the aromatic compound and also pH of solution. The arrangement of the molecules on the carbon surface is not face down. Furthermore, it is illustrated that the packing arrangement is most likely edge to face (sorbate-sorbent) with various tilt angles. For characterization of the carbon, the N-2 and CO2 adsorption were used. X-ray Photoelectron Spectroscopy (XPS) measurement was used to surface elemental analysis of activated carbon.
Resumo:
The role of protein kinase C (PKC) in glucose-stimulated insulin secretion (GSIS) is controversial. Using recombinant adenoviruses for overexpression of PKCalpha and PKCdelta, in both wild-type (WT) and kinase-dead (KD) forms, we here demonstrate that activation of these two PKCs is neither necessary nor sufficient for GSIS from batch-incubated, rat pancreatic islets. In contrast, responses to the pharmacologic activator 12-O-tetradecanoylphorbol-13-acetate (TPA) were reciprocally modulated by overexpression of the PKCalphaWT or PKCalphaKD but not the corresponding PKCdelta adenoviruses. The kinetics of the secretory response to glucose (monitored by perifusion) were not altered in either cultured islets overexpressing PKCalphaKD or freshly isolated islets stimulated in the presence of the conventional PKC (cPKC) inhibitor Go6976. However, the latter did inhibit the secretory response to TPA. Using phosphorylation state-specific antisera for consensus PKC phosphorylation sites, we also showed that (compared with TPA) glucose causes only a modest and transient functional activation of PKC (maximal at 2-5 min). However, glucose did promote a prolonged (15 min) phosphorylation of PKC substrates in the presence of the phosphatase inhibitor okadaic acid. Overall, the results demonstrate that glucose does stimulate PKCalphain pancreatic islets but that this makes little overall contribution to GSIS.
Resumo:
A key function of activated macrophages is to secrete proinflammatory cytokines such as TNF alpha; however, the intracellular pathway and machinery responsible for cytokine trafficking and secretion is largely undefined. Here we show that individual SNARE proteins involved in vesicle docking and fusion are regulated at both gene and protein expression upon stimulation with the bacterial cell wall component lipopolysaccharide. Focusing on two intracellular SNARE proteins, Vti1b and syntaxin 6 (Stx6), we show that they are up-regulated in conjunction with increasing cytokine secretion in activated macrophages and that their levels are selectively titrated to accommodate the volume and timing of post-Golgi cytokine trafficking. In macrophages, Vti1b and syntaxin 6 are localized on intracellular membranes and are present on isolated Golgi membranes and on Golgi-derived TNF alpha vesicles budded in vitro. By immunoprecipitation, we find that Vti1b and syntaxin 6 interact to form a novel intracellular Q-SNARE complex. Functional studies using overexpression of full-length and truncated proteins show that both Vti1b and syntaxin 6 function and have rate-limiting roles in TNF alpha trafficking and secretion. This study shows how macrophages have uniquely adapted a novel Golgi-associated SNARE complex to accommodate their requirement for increased cytokine secretion.
Resumo:
Most adverse environmental impacts result from design decisions made long before manufacturing or usage. In order to prevent this situation, several authors have proposed the application of life cycle assessment (LCA) at the very first phases of the design of a process, a product or a service. The study in this paper presents an innovative thermal drying process for sewage sludge called fry-drying, in which dewatered sludge is directly contacted in the dryer with hot recycled cooking oils (RCO) as the heat medium. Considering the practical difficulties for the disposal of these two wastes, fry-drying presents a potentially convenient method for their combined elimination by incineration of the final fry-dried sludge. An analytical comparison between a conventional drying process and the new proposed fry-drying process is reported, with reference to some environmental impact categories. The results of this study, applied at the earliest stages of the design of the process, assist evaluation of the feasibility of such system compared to a current disposal process for the drying and incineration of sewage sludge.
Resumo:
Objective: To investigate the effects of recombinant human activated protein C (rhAPC) on pulmonary function in acute lung injury (ALI) resulting from smoke inhalation in association with a bacterial challenge. Design: Prospective, randomized, controlled, experimental animal study with repeated measurements. Setting: Investigational intensive care unit at a university hospital. Subjects: Eighteen sheep (37.2 +/- 1.0 kg) were operatively prepared and randomly allocated to either the sham, control, or rhAPC group (n = 6 each). After a tracheotomy had been performed, ALI was produced in the control and rhAPC group by insufflation of 4 sets of 12 breaths of cotton smoke. Then, a 30 mL suspension of live Pseudomonas aeruginosa bacteria (containing 2-5 x 10(11) colony forming units) was instilled into the lungs according to an established protocol. The sham group received only the vehicle, i.e., 4 sets of 12 breaths of room air and instillation of 30 mL normal saline. The sheep were studied in the awake state for 24 hrs and were ventilated with 100% oxygen. RhAPC (24 mu g/kg/hr) was intravenously administered. The infusion was initiated 1 hr post-injury and lasted until the end of the experiment. The animals were resuscitated with Ringer's lactate solution to maintain constant pulmonary artery occlusion pressure. Measurements and Main Results., In comparison with nontreatment in controls, the infusion of rhAPC significantly attenuated the fall in PaO2/FiO(2) ratio (control group values were 521 +/- 22 at baseline [BL], 72 +/- 5 at 12 hrs, and 74 +/- 7 at 24 hrs, vs. rhAPC group values of 541 +/- 12 at BL, 151 +/- 29 at 12 hours [p < .05 vs. control], and 118 +/- 20 at 24 hrs), and significantly reduced the increase in pulmonary microvascular shunt fraction (Qs/Qt; control group at BL, 0.14 +/- 0.02, and at 24 hrs, 0.65 +/- 0.08; rhAPC group at BL, 0.24 +/- 0.04, and at 24 hrs, 0.45 +/- 0.02 [p < .05 vs. control]) and the increase in peak airway pressure (mbar; control group at BL, 20 +/- 1, and at 24 hrs, 36 +/- 4; rhAPC group at BL, 21 +/- 1, and at 24 hrs, 28 +/- 2 [p < .05 vs. control]). In addition, rhAPC limited the increase in lung 3-nitrotyrosine (after 24 hrs [%]: sham, 7 +/- 2; control, 17 +/- 1; rhAPC, 12 +/- 1 [p < .05 vs. control]), a reliable indicator of tissue injury. However, rhAPC failed to prevent lung edema formation. RhAPC-treated sheep showed no difference in activated clotting time or platelet count but exhibited less fibrin degradation products (1/6 animals) than did controls (4/6 animals). Conclusions. Recombinant human activated protein C attenuated ALI after smoke inhalation and bacterial challenge in sheep, without bleeding complications.
Resumo:
Molecules involved in axon guidance have recently also been shown to play a role in blood vessel guidance. To examine whether axon guidance molecules, such as the EphA4 receptor tyrosine kinase, might also play a role in development of the central nervous system (CNS) vasculature and repair following CNS injury, we examined wild-type and EphA4 null mutant (-/-) mice. EphA4-/- mice exhibited an abnormal CNS vascular structure in both the cerebral cortex and the spinal cord, with disorganized branching and a 30% smaller diameter. During development, EphA4 was expressed on endothelial cells. This pattern of expression was not maintained in the adult. After spinal cord injury in wild-type mice, expression of EphA4 was markedly up-regulated on activated astrocytes, many of which were tightly associated with blood vessels. In EphA4-/- spinal cord following injury, astrocytes were not as tightly associated with blood vessels as the wild-type astrocytes. In uninjured EphA4-/- mice, the blood-brain barrier (BBB) appeared normal, but it showed prolonged leakage following spinal cord injury. These results support a role for EphA4 in CNS vascular formation and guidance during development and an additional role in BBB repair.
Resumo:
The trafficking of molecules and membranes within cells is a prerequisite for all aspects of cellular immune functions, including the delivery and recycling of cell-surface proteins, secretion of immune mediators, ingestion of pathogens and activation of lymphocytes. SNARE (soluble-N-ethylmaleimide-sensitive-factor accessory-protein receptor)-family members mediate membrane fusion during all steps of trafficking, and function in almost all aspects of innate and adaptive immune responses. Here, we provide an overview of the roles of SNAREs in immune cells, offering insight into one level at which precision and tight regulation are instilled on immune responses.
Resumo:
An integrated anaerobic-aerobic treatment system of sulphate-laden wastewater was proposed here to achieve low sludge production, low energy consumption and effective sulphide control. Before integrating the whole system, the feasibility of autotrophic denitrification utilising dissolved sulphide produced during anaerobic treatment of sulphate rich wastewater was studied here. An upflow anaerobic sludge blanket reactor was operated to treat sulphate-rich synthetic wastewater (TOC = 100 mg/L and sulphate = 500 mg/L) and its effluent with dissolved sulphide and external nitrate solution were fed into an anoxic biofilter. The anaerobic reactor was able to remove 77-85% of TOC at HRT of 3 h and produce 70-90 mg S/L sulphide in dissolved form for the subsequent denitrification. The performance of anoxic reactor was stable, and the anoxic reactor could remove 30 mg N/L nitrate at HRT of 2 h through autotrophic denitrification. Furthermore, sulphur balance for the anoxic filter showed that more than 90% of the removed sulphide was actually oxidised into sulphate, thereby there was no accumulation of sulphur particles in the filter bed. The net sludge productions were approximately 0.15 to 0.18 g VSS/g COD in the anaerobic reactor and 0.22 to 0.31 g VSS/g NO3--N in the anoxic reactor. The findings in this study will be helpful in developing the integrated treatment system to achieve low-cost excess sludge minimisation.
Resumo:
In this paper, we describe the Vannotea system - an application designed to enable collaborating groups to discuss and annotate collections of high quality images, video, audio or 3D objects. The system has been designed specifically to capture and share scholarly discourse and annotations about multimedia research data by teams of trusted colleagues within a research or academic environment. As such, it provides: authenticated access to a web browser search interface for discovering and retrieving media objects; a media replay window that can incorporate a variety of embedded plug-ins to render different scientific media formats; an annotation authoring, editing, searching and browsing tool; and session logging and replay capabilities. Annotations are personal remarks, interpretations, questions or references that can be attached to whole files, segments or regions. Vannotea enables annotations to be attached either synchronously (using jabber message passing and audio/video conferencing) or asynchronously and stand-alone. The annotations are stored on an Annotea server, extended for multimedia content. Their access, retrieval and re-use is controlled via Shibboleth identity management and XACML access policies.
Resumo:
Developing a unified classification system to replace four of the systems currently used in disability athletics (i.e., track and field) has been widely advocated. The diverse impairments to be included in a unified system require severed assessment methods, results of which cannot be meaningfully compared. Therefore, the taxonomic basis of current classification systems is invalid in a unified system. Biomechanical analysis establishes that force, a vector described in terms of magnitude and direction, is a key determinant of success in all athletic disciplines. It is posited that all impairments to be included in a unified system may be classified as either force magnitude impairments (FMI) or force control impairments (FCI). This framework would provide a valid taxonomic basis for a unified system, creating the opportunity to decrease the number of classes and enhance the viability of disability athletics.
Resumo:
This paper reports on a system for automated agent negotiation, based on a formal and executable approach to capture the behavior of parties involved in a negotiation. It uses the JADE agent framework, and its major distinctive feature is the use of declarative negotiation strategies. The negotiation strategies are expressed in a declarative rules language, defeasible logic, and are applied using the implemented system DR-DEVICE. The key ideas and the overall system architecture are described, and a particular negotiation case is presented in detail.