108 resultados para 240402 Quantum Optics and Lasers
Resumo:
Particles that can be trapped in optical tweezers range from tens of microns down to tens of nanometres in size. Interestingly, this size range includes large macromolecules. We show experimentally, in agreement with theoretical expectations, that optical tweezers can be used to manipulate single molecules of polyethylene oxide suspended in water. The trapped molecules accumulate without aggregating, so this provides optical control of the concentration of macromolecules in solution. Apart from possible applications such as the micromanipulation of nanoparticles, nanoassembly, microchemistry, and the study of biological macromolecules, our results also provide insight into the thermodynamics of optical tweezers.
Resumo:
We report on the effect of the replacement of the conventional ITO anode with the semitransparent metallic material on the performance of microcavity OLEDs. We performed comprehensive simulations of the emission from microcavity OLEDs consisting of widely used organic materials, N,N′-di(naphthalene-1- yl)-N,N′-diphenylbenzidine (NPB) as a hole transport layer and tris (8-hydroxyquinoline) (Alq3) as emitting and electron transporting layer. Silver and LiF/Al were considered as a cathode, while metallic (Au and Ag) anode was used and simulations were performed on devices with both the metallic and conventional ITO anode. The electroluminescence emission spectra, electric field distribution inside the device, carrier density, recombination rate and exciton density were calculated as a function of the position of the emission layer. The results show that the metallic anode enhances light output and that optimum emission from a microcavity OLED is achieved when the position of the recombination region is aligned with the antinode of the standing wave inside the cavity. The microcavity OLED devices with Ag/Ag and Ag/Au mirrors were fabricated and characterized. The experimental results have been compared to the simulations and the influence of the different anode, emission region width and position on the performance of microcavity OLEDs was discussed.