234 resultados para relative utility models
Resumo:
Quantifying mass and energy exchanges within tropical forests is essential for understanding their role in the global carbon budget and how they will respond to perturbations in climate. This study reviews ecosystem process models designed to predict the growth and productivity of temperate and tropical forest ecosystems. Temperate forest models were included because of the minimal number of tropical forest models. The review provides a multiscale assessment enabling potential users to select a model suited to the scale and type of information they require in tropical forests. Process models are reviewed in relation to their input and output parameters, minimum spatial and temporal units of operation, maximum spatial extent and time period of application for each organization level of modelling. Organizational levels included leaf-tree, plot-stand, regional and ecosystem levels, with model complexity decreasing as the time-step and spatial extent of model operation increases. All ecosystem models are simplified versions of reality and are typically aspatial. Remotely sensed data sets and derived products may be used to initialize, drive and validate ecosystem process models. At the simplest level, remotely sensed data are used to delimit location, extent and changes over time of vegetation communities. At a more advanced level, remotely sensed data products have been used to estimate key structural and biophysical properties associated with ecosystem processes in tropical and temperate forests. Combining ecological models and image data enables the development of carbon accounting systems that will contribute to understanding greenhouse gas budgets at biome and global scales.
Resumo:
Exponential and sigmoidal functions have been suggested to describe the bulk density profiles of crusts. The present work aims to evaluate these conceptual models using high resolution X-radiography. Repacked seedbeds from two soil materials, air-dried or prewetted by capillary rise, were subjected to simulated rain, which resulted in three types of structural crusts, namely, slaking, infilling, and coalescing. Bulk density distributions with depth were generated using high-resolution (70 mum), calibrated X-ray images of slices from the resin-impregnated crusted seedbeds. The bulk density decreased progressively with depth, which supports the suggestion that a crust should be considered as a nonuniform layer. For the slaking and the coalescing crusts, the exponential function underestimated the strong change in bulk density across the morphologically defined transition between the crust and the underlying material; the sigmoidal function provided a better description. Neither of these crust models effectively described the shape of the bulk density profiles through the whole seedbed. Below the infilling and slaking crusts, bulk density increased linearly with depth as a result of slumping. In the coalescing crusted seedbed, the whole seedbed uniformly collapsed and most of the bulk density change within the crust could be ascribed to slumping (0.33 g cm(-3)) rather than to crusting (0.12 g cm(-3)). Finally, (i) X-radiography appears as a unique tool to generate high resolution bulk density profiles and (ii) in structural crusts, bulk density profiles could be modeled using the existing exponential and sigmoidal crusting models, provided a slumping model would be coupled.
Resumo:
A generalised ladder operator is used to construct the conserved operators for any one-dimensional lattice model derived from the Yang-Baxter equation. As an example, the low order conserved operators for the XYh model are calculated explicitly.
Resumo:
Models of population dynamics are commonly used to predict risks in ecology, particularly risks of population decline. There is often considerable uncertainty associated with these predictions. However, alternatives to predictions based on population models have not been assessed. We used simulation models of hypothetical species to generate the kinds of data that might typically be available to ecologists and then invited other researchers to predict risks of population declines using these data. The accuracy of the predictions was assessed by comparison with the forecasts of the original model. The researchers used either population models or subjective judgement to make their predictions. Predictions made using models were only slightly more accurate than subjective judgements of risk. However, predictions using models tended to be unbiased, while subjective judgements were biased towards over-estimation. Psychology literature suggests that the bias of subjective judgements is likely to vary somewhat unpredictably among people, depending on their stake in the outcome. This will make subjective predictions more uncertain and less transparent than those based on models. (C) 2004 Elsevier SAS. All rights reserved.
Resumo:
No abstract
Resumo:
Antigen recognition by cytotoxic CD8 T cells is dependent upon a number of critical steps in MHC class I antigen processing including proteosomal cleavage, TAP transport into the endoplasmic reticulum, and MHC class 1 binding. Based on extensive experimental data relating to each of these steps there is now the capacity to model individual antigen processing steps with a high degree of accuracy. This paper demonstrates the potential to bring together models of individual antigen processing steps, for example proteosome cleavage, TAP transport, and MHC binding, to build highly informative models of functional pathways. In particular, we demonstrate how an artificial neural network model of TAP transport was used to mine a HLA-binding database so as to identify H LA-binding peptides transported by TAP. This integrated model of antigen processing provided the unique insight that HLA class I alleles apparently constitute two separate classes: those that are TAP-efficient for peptide loading (HLA-B27, -A3, and -A24) and those that are TAP-inefficient (HLA-A2, -B7, and -B8). Hence, using this integrated model we were able to generate novel hypotheses regarding antigen processing, and these hypotheses are now capable of being tested experimentally. This model confirms the feasibility of constructing a virtual immune system, whereby each additional step in antigen processing is incorporated into a single modular model. Accurate models of antigen processing have implications for the study of basic immunology as well as for the design of peptide-based vaccines and other immunotherapies. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
The experiment examined the influence of memory for prior instances on aircraft conflict detection. Participants saw pairs of similar aircraft repeatedly conflict with each other. Performance improvements suggest that participants credited the conflict status of familiar aircraft pairs to repeated static features such as speed, and dynamic features such as aircraft relative position. Participants missed conflicts when a conflict pair resembled a pair that had repeatedly passed safely. Participants either did not attend to, or interpret, the bearing of aircraft correctly as a result of false memory-based expectations. Implications for instance models and situational awareness in dynamic systems are discussed.
Resumo:
The diversity and community structures of symbiotic dinoflagellates are described from reef invertebrates in southern and central provinces of the Great Barrier Reef (GBR), Australia, and Zamami Island, Okinawa, Japan. The symbiont assemblages from region to region were dominated by Clade C Symbiodinium spp. and consisted of numerous host-specific and/or rare types (specialists), and several types common to many hosts (generalists). Prevalence in the host community among certain host-generalist symbionts differed between inshore and offshore environments, across latitudinal (central versus southern GBR) gradients, and over wide geographic ranges (GBR versus Okinawa). One particular symbiont (C3h) from the GBR had a dramatic shift in dominance. Its prevalence ranged from being extremely rare, or absent on high-latitude reefs to dominating the scleractinian diversity on a mid-latitude inshore reef. These changes occurred among coral fauna whose larvae must acquire symbionts from environmental sources (horizontal symbiont acquisition). Such differences did not occur among 'vertical transmitters' such as Porites spp., Montipora spp. and pocilloporids (corals that directly transmit symbionts to their offspring) or among those hosts displaying 'horizontal acquisition', but that associate with specific symbionts. Most host-specialized types were found to be characteristic of a particular geographic region (i.e. Okinawa versus Central GBR versus Southern GBR). The mode of symbiont acquisition may play an important role in how symbiont composition may shift in west Pacific host communities in response to climate change. There is no indication that recent episodes of mass bleaching have provoked changes in host-symbiont combinations from the central GBR.
Resumo:
Objective To assess how well B-type natriuretic peptide (BNP) predicts prognosis in patients with heart failure. Design Systematic review of studies assessing BNP for prognosis m patients with heart failure or asymptomatic patients. Data sources Electronic searches of Medline and Embase from January 1994 to March 2004 and reference lists of included studies. Study selection and data extraction We included all studies that estimated the relation between BNP measurement and the risk of death, cardiac death, sudden death, or cardiovascular event in patients with heart failure or asymptomatic patients, including initial values and changes in values in response to treatment. Multivariable models that included both BNP and left ventricular ejection fraction as predictors were used to compare the prognostic value of each variable. Two reviewers independently selected studies and extracted data. Data synthesis 19 studies used BNP to estimate the relative risk of death or cardiovascular events in heart failure patients and five studies in asymptomatic patients. In heart failure patients, each 100 pg/ml increase was associated with a 35% increase in the relative risk of death. BNP was used in 35 multivariable models of prognosis. In nine of the models, it was the only variable to reach significance-that is, other variables contained no prognostic information beyond that of BNP. Even allowing for the scale of the variables, it seems to be a strong indicator of risk. Conclusion Although systematic reviews of prognostic studies have inherent difficulties, including die possibility of publication bias, the results of the studies in this review show that BNP is a strong prognostic indicator for both asymptomatic patients mid for patients with heart failure at all stages of disease.
Resumo:
In primates, the observation of meaningful, goaldirected actions engages a network of cortical areas located within the premotor and inferior parietal lobules. Current models suggest that activity within these regions arises relatively automatically during passive action observation without the need for topdown control. Here we used functional magnetic resonance imaging to determine whether cortical activit)' associated with action observation is modulated by the strategic allocation of selective attention. Normal observers viewed movie clips of reach-to-grasp actions while performing an easy or difficult visual discrimination at the fovea. A wholebrain analysis was performed to determine the effects of attentional load on neural responses to observed hand actions. Our results suggest that cortical areas involved in action observation are significantiy modulated by attentional load. These findings have important implications for recent attempts to link the human action-observation system to response properties of "mirror neurons" in monkeys.
Resumo:
Variation in larval quality has been shown to strongly affect the post-metamorphic performance of a wide range of marine invertebrate species. Extending the larval period of non-feeding larvae strongly affects post-metamorphic survival and growth in a range of species. These 'carry-over' effects are assumed to be due to changes in larval energetic reserves but direct tests are surprisingly rare. Here, we examine the energetic costs ( relative to the costs of metamorphosis) of extending the larval period of the colonial ascidian Diplosoma listerianum. We also manipulated larval activity levels and compared the energy consumption rates of swimming larvae and inactive larvae. Larval swimming was, energetically, very costly relative to either metamorphosis or merely extending the larval period. At least 25% of the larval energetic reserves are available for larval swimming but metamorphosis was relatively inexpensive in this species and larval reserves can be used for post-metamorphic growth. The carry-over effects previously observed in this species appear to be nutritionally mediated and even short (< 3 h) periods of larval swimming can significantly deplete larval energy reserves.
Resumo:
We construct the Drinfeld twists ( factorizing F-matrices) of the gl(m-n)-invariant fermion model. Completely symmetric representation of the pseudo-particle creation operators of the model are obtained in the basis provided by the F-matrix ( the F-basis). We resolve the hierarchy of the nested Bethe vectors in the F-basis for the gl(m-n) supersymmetric model.
Resumo:
This paper investigates the relationship between suicide rates and prevalence of mental disorder and suicide attempts, across socio-economic status (SES) groups based on area of residence. Australian suicide data (1996-1998) were analysed in conjunction with area-based prevalences of mental disorder derived from the National Survey of Mental Health and Well-Being (1997). Poisson regression models of suicide risk included age, quintile of area-based SES, urban-rural residence, and country of birth (COB), with males and females analysed separately. Analysis focussed on the association between suicide and prevalences of (ICD-10) affective disorders, anxiety disorders, substance use disorders and suicide attempts by SES group. Prevalences of other psychiatric symptomatology, substance use problems, health service utilisation, stressful life-events and personality were also investigated. Significant increasing gradients were evident from high to low SES groups for prevalences of affective disorders, anxiety disorders (females only), and substance use disorders (males only); sub-threshold drug and alcohol problems and depression; and suicide attempts and suicide (males only). Prevalences of mental disorder, other sub-threshold mental health items and suicide attempts were significantly associated with suicide, but in most cases associations were reduced in magnitude and became statistically non-significant after adjustment for COB, urban-rural residence, and SES. For male suicide the relative risk (RR) in the lowest SES group compared to the highest was 1.40 (95% CI 1.29-1.52, p < 0.001) for all ages, and 1.46 (95% CI 1.27-1.67, p < 0.001) for male youth (20-34 years). This relationship was not substantially modified in males when regression models included prevalences of affective disorders, and other selected mental health variables and demographic factors. From a population perspective, SES remained significantly associated with suicide after controlling for the prevalence of mental disorders and other psychiatric symptomatology. Mental conditions and previous suicidal behaviour may play an intermediary role between SES and suicide, but this study suggests that an independent relationship between suicide and SES also exists. (c) 2005 Elsevier Ltd. All rights reserved.