190 resultados para mother-daughter genetic relation
Resumo:
The spectral sensitivities of avian retinal photoreceptors are examined with respect to microspectrophotometric measurements of single cells, spectrophotometric measurements of extracted or in vitro regenerated visual pigments, and molecular genetic analyses of visual pigment opsin protein sequences. Bird species from diverse orders are compared in relation to their evolution, their habitats and the multiplicity of visual tasks they must perform. Birds have five different types of visual pigment and seven different types of photo receptor-rods, double (uneven twin) cones and four types of single cone. The spectral locations of the wavelengths of maximum absorbance (lambda (max)) of the different visual pigments, and the spectral transmittance characteristics of the intraocular spectral filters (cone oil droplets) that also determine photoreceptor spectral sensitivity, vary according to both habitat and phylogenetic relatedness. The primary influence on avian retinal design appears to be the range of wavelengths available for vision, regardless of whether that range is determined by the spectral distribution of the natural illumination or the spectral transmittance of the ocular media (cornea, aqueous humour, lens, vitreous humour). Nevertheless, other variations in spectral sensitivity exist that reflect the variability and complexity of avian visual ecology. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
A shortened version of the Interpersonal Sensitivity Measure (IPSM) developed to predict depression prone personalities was administered in a self-report questionnaire to a community-based sample of 3269 Australian twin pairs aged 18-28 years, along with Eysenck's EPQ and Cloninger's TPQ. The IPSM included four sub-scales: Separation Anxiety (SEP); Interpersonal Sensitivity (INT); Fragile Inner-Self (FIS); and Timidity (TIM). Univariate analysis revealed that individual differences in the IPSM sub-scale scores were best explained by additive genetic and specific environmental effects. Confirming previous research findings, familial aggregation for the EPQ and TPQ personality dimensions was entirely due to additive genetic effects. In the multivariate case, a model comprising additive genetic and specific environmental effects best explained the covariation between the latent factors for male and female twin pairs alike. The EPQ and TPQ dimensions accounted for moderate to large proportions of the genetic variance (40-76%) in the IPSM sub-scales, while most of the non-shared environment variance was unique to the IPSM sub-scales. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Variation in the personality trait of neuroticism is known to be affected by genetic influences, but despite a number of association studies, the genes involved have not yet been characterized. In a recent study of platelet monoamine oxidase in 1,551 twin subjects, we found a significant association between monoamine oxidase activity and scores on the Eysenck Personality Questionnaire neuroticism scale. Further analyses presented here indicate that both neuroticism and monoamine oxidase activity are associated with variation in smoking habits, and that adjusting for the effect of smoking strengthens the association between MAO and neuroticism. Analysis of the genetic and environmental sources of covariation between neuroticism, smoking, and monoamine oxidase activity show that approximately 8% of the genetic variance in neuroticism is due to the same additive genetic effects that contribute to variation in monoamine oxidase activity, suggesting that variation in neuroticism is associated in part with aspects of serotonin metabolism. (C) 2001 Wiley-Liss, Inc.
Resumo:
We consider the relation between the conditional moment closure (CMC) and the unsteady flamelet model (FM). The CMC equations were originally constructed as global equations, while FM was derived asymptotically for a thin reaction zone. The recent tendency is to use FM-type equations as global equations. We investigate the possible consequences and suggest a new version of FM: coordinate-invariant FM (CIFM). Unlike FM, CIFM complies with conditional properties of the exact transport equations which are used effectively in CMC. We analyse the assumptions needed to obtain another global version of FM: representative interactive flamelets (RIF), from original FM and demonstrate that, in homogeneous turbulence, one of these assumptions is equivalent to the main CMC hypothesis.
Resumo:
The P3(00) event-related potential (ERP) component is widely used as a measure of cognitive functioning and provides a sensitive electrophysiological index of the attentional and working memory demands of a task. This study investigated what proportion of the variance in the amplitude and latency of the P3, elicited in a delayed response working memory task, could be attributed to genetic factors. In 335 adolescent twin pairs and 48 siblings, the amplitude and latency of the P3 were examined at frontal, central, and parietal sites. Additive genetic factors accounted for 48% to 61% of the variance in P3 amplitude. Approximately one-third of the genetic variation at frontal sites was mediated by a common genetic factor that also influenced the genetic variation at parietal and central sites. Familial resemblance in P3 latency was due to genetic influence that accounted for 44% to 50% of the variance. Genetic covariance in P3 latency across sites was substantial, with a large part of the variance found at parietal, central, and frontal sites attributed to a common genetic factor. The findings provide further evidence that the P3 is a promising phenotype of neural activity of the brain and has the potential to be used in linkage and association analysis in the search for quantitative trait loci (QTLs) influencing cognition.
Resumo:
Individual differences in the variance of event-related potential (ERP) slow wave (SW) measures were examined. SW was recorded at prefrontal and parietal sites during memory and sensory trials of a delayed-response task in 391 adolescent twin pairs. Familial resemblance was identified and there was a strong suggestion of genetic influence. A common genetic factor influencing memory and sensory SW was identified at the prefrontal site (accounting for an estimated 35%-37% of the reliable variance) and at the parietal site (51%-52% of the reliable variance). Remaining reliable variance was influenced by unique environmental factors. Measurement error accounted for 24% to 30% of the total variance of each variable. The results show genetic independence for recording site, but not trial type, and suggest that the genetic factors identified relate more directly to brain structures, as defined by the cognitive functions they support, than to the cognitive networks that link them.
Resumo:
The genetic relationship between lower (information processing speed), intermediate (working memory), and higher levels (complex cognitive processes as indexed by IQ) of mental ability was studied in a classical twin design comprising 166 monozygotic and 190 dizygotic twin pairs. Processing speed was measured by a choice reaction time (RT) task (2-, 4-, and 8-choice), working memory by a visual-spatial delayed response task, and IQ by the Multidimensional Aptitude Battery. Multivariate analysis, adjusted for test-retest reliability, showed the presence of a genetic factor influencing all variables and a genetic factor influencing 4- and 8-choice RTs, working memory, and IQ. There were also genetic factors specific to 8-choice RT, working memory, and IQ. The results confirmed a strong relationship between choice RT and IQ (phenotypic correlations: -0.31 to -0.53 in females, -0.32 to -0.56 in males; genotypic correlations: -0.45 to -0.70) and a weaker but significant association between working memory and IQ (phenotypic: 0.26 in females, 0.13 in males; genotypic: 0.34). A significant part of the genetic variance (43%) in IQ was not related to either choice RT or delayed response performance, and may represent higher order cognitive processes.
Resumo:
Rapid access to genetic information is central to the revolution presently occurring in the pharmaceutical industry, particularly In relation to novel drug target identification and drug development. Genetic variation, gene expression, gene function and gene structure are just some of the important research areas requiring efficient methods of DNA screening. Here, we highlight state-of-the-art techniques and devices for gene screening that promise cheaper and higher-throughput yields than currently achieved with DNA microarrays. We include an overview of existing and proposed bead-based strategies designed to dramatically increase the number of probes that can be interrogated in one assay. We focus, in particular, on the issue of encoding and/or decoding (bar-coding) large bead-based libraries for HTS.
Resumo:
[GRAPHICS] The stereocontrolled synthesis of (2S,4R,6R,8S,10S,1'R,1"R)-2(acetylhydroxymethyl)-4, 10-dimethyl-8(isopropenylhydroxymethyl)-1, 7-dioxaspiro[5,5]-undecane (4a) and its C1"-epimer (4b), the key mother spiroketals of the HIV-1 protease inhibitive didemnaketals from the ascidian Didemnum sp., has been carried out through multisteps from the natural (R)-(+)-pulegone, which involved the diastereoselective construction of four chiral carbon centers(C-2, C-6, C-8, and C-1') by intramolecular chiral induce.
Resumo:
Existing procedures for the generation of polymorphic DNA markers are not optimal for insect studies in which the organisms are often tiny and background molecular Information is often non-existent. We have used a new high throughput DNA marker generation protocol called randomly amplified DNA fingerprints (RAF) to analyse the genetic variability In three separate strains of the stored grain pest, Rhyzopertha dominica. This protocol is quick, robust and reliable even though it requires minimal sample preparation, minute amounts of DNA and no prior molecular analysis of the organism. Arbitrarily selected oligonucleotide primers routinely produced similar to 50 scoreable polymorphic DNA markers, between individuals of three Independent field isolates of R. dominica. Multivariate cluster analysis using forty-nine arbitrarily selected polymorphisms generated from a single primer reliably separated individuals into three clades corresponding to their geographical origin. The resulting clades were quite distinct, with an average genetic difference of 37.5 +/- 6.0% between clades and of 21.0 +/- 7.1% between individuals within clades. As a prelude to future gene mapping efforts, we have also assessed the performance of RAF under conditions commonly used in gene mapping. In this analysis, fingerprints from pooled DNA samples accurately and reproducibly reflected RAF profiles obtained from Individual DNA samples that had been combined to create the bulked samples.