263 resultados para marine reef fish
Resumo:
Five commonly imported freshwater ornamental fish: Poecilia reticulata (guppy); Xiphophorus maculatus (platy); Paracheirodon innesi (neon tetra); Paracheirodon axelrodi (cardinal tetra); and Gyrinocheilus aymonieri (sucking catfish), 361 individuals in total, were examined for parasites immediately after being released from quarantine in Australia. Ten parasites species were found: Camallanus cotti; Centrocestus formosanus; Bothriocephalus acheilognathi; Urocleidoides reticulatus; Tetrahymena corlissi; Chilodonella piscicola; Hexamita sp.; Cryptobia sp.; Chloromyxum sp.; and an unidentified larval nematode. Though shipments had come from up to five different exporting companies, parasite prevalence was uniformly high. We suggest that prior to release, fish transported internationally should be checked for high risk pathogens such as Camallanus cotti, B. acheilognathi and Centrocestus formosanus, and treated for common infections such as Hexamita sp., Cryptobia sp. T. corlissi and Chilodonella piscicola to inhibit the spread of disease and enhance the survival of the fish.
Resumo:
The status and composition of the Diplosentidae Tubangui et Masilungan, 1937 are reviewed. The type species of the type genus, Diplosentis amphacanthi Tubangui et Masilungan, 1937 from Siganus canaliculatus (Park, 1797) in the Philippines, is concluded to have been described inaccurately,in supposedly possessing, only two cement glands and lemnisci enclosed in a membranous sac. The species is almost certainly very close to species of Neorhadinorhynchus yamaguti, 1939 and Sclerocollum Schmidt of Paperna, 1978 which have also been reported from siganids from the tropical Indo-Pacific. Species of these genera have four cement glands and unexceptional lemnisci. As a result, Diplosentis Tubangui et Masilungan, 1937 is best considered to have affinities with the Cavisomidae Meyer, 1932. The Cavisomidae has priority over the Diplosentidae; thus the Diplosentidae becomes a synonym of the Cavisomidae. Neorhadinorhynchus and Sclerocollum are considered synonyms of Diplosentis. The affinities of the other species and genera formerly included in the Diplosentidae (other species of Diplosentis, Allorhadinorhynchus Yamaguti, 1959, Amapacanthus Salgado-Maldonado et Santos, 2000, Pararhadinorhynchus Johnston et Edmonds, 1947, Golvanorhynchus Noronha, do Fabio et Pinto, 1978 and Slendrorhynchus Amin et Soy, 1996) are discussed. It is concluded that all but Pararhadinorhynchus, two species of Diplosentis and Amapacanthus can be accommodated elsewhere satisfactorily. A new family, Transvenidae, is proposed for a small group of acanthocephalans that genuinely possess only two cement glands. Transvena annulospinosa gen. n., sp. n. is described from the labrids Anampses neoguinaicus Bleeker, 1878 (type host), A. geographicus Valenciennes, 1840, A. caeruleopunctatus Ruppell, 1829, Hemigymnus fasciatus (Bloch, 1792), and H. melapterus (Bloch, 1791) from the Great Barrier Reef, Queensland, Australia. Transvena gen. n. is distinguished from all other acanthocephalan genera by having a combination of a single ring of small spines on its trunk near or at the junction between the neck and trunk, two cement glands, a double-walled proboscis receptacle and hooks which decrease in length from the apex to the base of the proboscis. A second new genus within the Transvenidae, Trajectura, is proposed for T. perinsolens sp. n. from Anampses neoguinaicus, also from the Great Barrier Reef. Trajectura gen. n. is distinguished by the possession of only two cement glands and an anterior conical projection (function unknown) on the females. Diplosentis ikedai Machida, 1992 shares these characters and is recombined as Trajectura ikedai comb. n. Pararhadinorhynchus is transferred to the Transvenidae and Diplosentis manteri Gupta et Fatma, 1979 is recombined as Pararhadinorhynchus manteri comb. n.
Resumo:
Polychlorinated dibenzo-p-dioxin (PCDD) and dibenzofuran (PCDF) concentrations were measured in sediment and seagrass from five locations in or adjacent to the Great Barrier Reef Marine Park. A full spectrum of Cl(5-8)DDs were present in all samples and, in particular, elevated levels of Cl8DD were found. PCDFs could not be quantified in any samples. The PCDD concentrations ranged over two orders of magnitude between sites, and there was a good correlation between sediment and seagrass levels. There were large quantities of sediment present on the seagrass (20-62% on a dry wt. basis), and it was concluded that this was a primary source of the PCDDs in the seagrass samples. The PCDD levels in the seagrass samples were compared with the levels in the tissue of three dugongs stranded in the same region. The relative accumulation of the 2,3,7,8-substituted PCDD congeners in the dugongs decreased by over two orders of magnitude with increasing degree of chlorination. This was attributed to the reduced absorption of the higher chlorinated congeners in the digestive tract, a behaviour that has been observed in other mammals such as domestic cows. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Reef-building corals are renowned for their brilliant colours yet the biochemical basis for the pigmentation of corals is unknown. Here, we show that these colours are due to a family of GFP-like proteins that fluoresce under ultraviolet (UV) or visible light. Pigments from ten coral species were almost identical to pocilloporin (Dove et al. 1995) being dimers or trimers with approximately 28-kDa subunits. Degenerative primers made to common N-terminal sequences yielded a complete sequence from reef-building coral cDNA, which had 19.6% amino acid identity with green fluorescent protein (GFP). Molecular modelling revealed a 'beta -can' structure, like GFP, with 11 beta -strands and a completely solvent-inaccessible fluorophore composed of the modified residues Gln-61, Tyr-62 and Gly-63. The molecular properties of pocilloporins indicate a range of functions from the conversion of high-intensity UV radiation into photosynthetically active radiation (PAR) that can be regulated by the dinoflagellate peridinin-chlorophyll-protein (PCP) complex, to the shielding of the Soret and Q(x) bands of chlorophyll a and c from scattered high-intensity light. These properties of pocilloporin support its potential role in protecting the photosynthetic machinery of the symbiotic dinoflagellates of corals under high light conditions and in enhancing the availability of photosynthetic light under shade conditions.
Resumo:
Coral reef degradation resulting from nutrient enrichment of coastal waters is of increasing global concern. Although effects of nutrients on coral reef organisms have been demonstrated in the laboratory, there is little direct evidence of nutrient effects on coral reef biota in situ. The ENCORE experiment investigated responses of coral reef organisms and processes to controlled additions of dissolved inorganic nitrogen (N) and/or phosphorus (P) on an offshore reef(One Tree Island) at the southern end of the Great Barrier Reef, Australia. A multi-disciplinary team assessed a variety of factors focusing on nutrient dynamics and biotic responses. A controlled and replicated experiment was conducted over two years using twelve small patch reefs ponded at low tide by a coral rim. Treatments included three control reefs (no nutrient addition) and three + N reefs (NH4Cl added), three + P reefs (KH2PO4 added), and three + N + P reefs. Nutrients were added as pulses at each low tide (ca twice per day) by remotely operated units. There were two phases of nutrient additions. During the initial, low-loading phase of the experiment nutrient pulses (mean dose = 11.5 muM NH4+; 2.3 muM PO4-3) rapidly declined, reaching near-background levels (mean = 0.9 muM NH4+; 0.5 muM PO4-3) within 2-3 h. A variety of biotic processes, assessed over a year during this initial nutrient loading phase, were not significantly affected, with the exception of coral reproduction, which was affected in all nutrient treatments. In Acropora longicyathus and A. aspera, fewer successfully developed embryos were formed, and in A. longicyathus fertilization rates and lipid levels decreased. In the second, high-loading, phase of ENCORE an increased nutrient dosage (mean dose = 36.2 muM NH4+; 5.1 muM PO4-3 declining to means of 11.3 muM NH4+ and 2.4 muM PO4-3 at the end of low tide) was used for a further year, and a variety of significant biotic responses occurred. Encrusting algae incorporated virtually none of the added nutrients. Organisms containing endosymbiotic zooxanthellae (corals and giant clams) assimilated dissolved nutrients rapidly and were responsive to added nutrients. Coral mortality, not detected during the initial low-loading phase, became evident with increased nutrient dosage, particularly in Pocillopora damicornis. Nitrogen additions stunted coral growth, and phosphorus additions had a variable effect. Coral calcification rate and linear extension increased in the presence of added phosphorus but skeletal density was reduced, making corals more susceptible to breakage. Settlement of all coral larvae was reduced in nitrogen treatments, yet settlement of larvae from brooded species was enhanced in phosphorus treatments. Recruitment of stomatopods, benthic crustaceans living in coral rubble, was reduced in nitrogen and nitrogen plus phosphorus treatments. Grazing rates and reproductive effort of various fish species were not affected by the nutrient treatments. Microbial nitrogen transformations in sediments,were responsive to nutrient loading with nitrogen fixation significantly increased in phosphorus treatments and denitrification increased in all treatments to which nitrogen had been added. Rates of bioerosion and grazing showed no significant effects of added nutrients, ENCORE has shown that reef organisms and processes investigated ill situ were impacted by elevated nutrients. Impacts mere dependent on dose level, whether nitrogen and/or phosphorus mere elevated and were often species-specific. The impacts were generally sub-lethal and subtle and the treated reefs at the end of the experiment mere visually similar to control reefs. Rapid nutrient uptake indicates that nutrient concentrations alone are not adequate to assess nutrient condition of reefs. Sensitive and quantifiable biological indicators need to be developed for coral reef ecosystems. The potential bioindicators identified in ENCORE should be tested in future research on coral reef/nutrient interactions. Synergistic and cumulative effects of elevated nutrients and other environmental parameters, comparative studies of intact vs. disturbed reefs, offshore vs, inshore reefs, or the ability of a nutrient-stressed reef to respond to natural disturbances require elucidation. An expanded understanding of coral reef responses to anthropogenic impacts is necessary, particularly regarding the subtle, sub-lethal effects detected in the ENCORE studies. (C) 2001 Published by Elsevier Science Ltd.
Resumo:
We examined the burst swimming performance of two Antarctic fishes, Trematomus bernacchii and T. centronotus, at five temperatures between -1 degreesC and 10 degreesC. As Antarctic fishes are considered one of the most cold specialised and stenothermal of all ectotherms, we predicted they would possess a narrow thermal performance breadth for burst swimming and a correlative decrease in performance at high temperatures. Burst swimming was assessed by videotaping swimming sequences with a 50-Hz video camera and analysing the sequences frame-by-frame to determine maximum velocity, the distance moved throughout the initial 200 ms, and the time taken to reach maximum velocity. In contrast to our prediction, we found both species possessed a wide thermal performance breadth for burst swimming. Although maximum swimming velocity for both T. bernacchii and T. centronotus was significantly highest at 6 degreesC, maximum velocity at ah other test temperatures was less than 20% lower. Thus, it appears that specialisation to a highly stable and cold environment is not necessarily associated with a narrow thermal performance breadth for burst swimming in Antarctic fish. We also examined the ability of the Antarctic fish Pagothenia borchgrevinki to acclimate their burst-swimming performance to different temperatures. We exposed P, borchgrevinki to either -1 degreesC or 4 degreesC for 4 weeks and tested their burst-swimming performance at four temperatures between -1 degreesC and 10 degreesC. Burst-swimming performance of Pagothenia borchgrevinki was unaffected by exposure to either -1 degreesC or 4 degreesC for 4 weeks. Maximum swimming velocity of both acclimation groups was thermally independent over the total temperature range of -1 degreesC to 10 degreesC. Therefore, the loss of any capacity to restructure the phenotype and an inability to thermally acclimate swimming performance appears to be associated with inhabiting a highly stable thermal environment.
Resumo:
High levels of mortality in the Mediterranean bath sponge industry have raised concerns for the future of sponge farms. Healthy sponges feed predominantly on bacteria, and many harbour a wide diversity of inter- and extra-cellular symbiotic bacteria. Here we describe the first isolation and description of a pathogenic bacterium from an infected marine sponge. Microbiological examination of tissue necrosis in the Great Barrier Reef sponge Rhopaloeides odorabile resulted in isolation of the bacterial strain NW4327. Sponges infected with strain NW4327 exhibited high levels of external tissue necrosis, and the strain was re-isolated from infected sponges. A single morphotype, which had burrowed through the collagenous spongin fibres causing severe necrosis, was observed microscopically. Strain NW4327 was capable of degrading commercial preparations of azo-collagen, providing further evidence of its involvement in spongin fibre necrosis, Strain NW4327 disrupted the microbial community associated with R. odorabile and was able to infect and kill healthy sponge tissue. 16S rRNA sequence analysis revealed that strain NW4327 is a novel member of the alpha-proteobacteria.
Resumo:
We determined the maximum sustained swimming speed (U-crit), and resting and maximum ventilation rates of the Antarctic fish Pagothenia borchgrevinki at five temperatures between -1degreesC and 8degreesC. We also determined resting metabolic rate (VO2) at -1degreesC, 2degreesC, and 4degreesC. U-crit of P. borchgrevinki was highest at -1degreesC (2.7+/-0.1 BL s(-1)) and rapidly decreased with temperature, representing a thermal performance breadth of only 5degreesC. This narrow thermal performance supports our prediction that specialisation to the subzero Antarctic marine environment is associated with a physiological trade-off in performance at high temperatures. Resting oxygen consumption and ventilation rate increased by more than 200% across the temperature range, which most likely contribute to the decrease in aerobic swimming capabilities at higher temperatures. (C) 2002 Published by Elsevier Science Ltd.
Resumo:
Cleaning behaviour has generally been viewed from the cleaner or client's point of view. Few studies, however, have examined cleaning behaviour from the parasites' perspective, yet they are the equally-important third players in such associations. All three players are likely to have had their evolution affected by the association. As cleaner organisms are important predators of parasites, cleaners are likely to have an important effect on their prey. Little, however, is known of how parasites are affected by cleaning associations and the strategies that parasites use in response to cleaners. I examine here what parasites are involved in cleaning interactions, the effect cleaners have on parasites, the potential counter-adaptations that parasites have evolved against the predatory activities of cleaner organisms, the potential influence of cleaners on the life history traits of parasites, and other factors affected by cleaners. I have found that a wide range of ectoparasites from diverse habitats have been reported to interact with a wide range of cleaner organisms. Some of the life history traits of parasites are consistent with the idea that they are in response to cleaner predation. It is clear, however, that although many cleaning systems exist their ecological role is largely unexplored. This has likely been hindered by our lack of information on the parasites involved in cleaning interactions.
Resumo:
Land use intensification is estimated to result in an overall increase in sediment delivery to the Great Barrier Reef lagoon by a factor of approximately four. Modelling suggests that, following land use intensification, croplands cause the greatest increase of sediment yield and sediment concentration, whereas erosion of grazing land is the main contemporary source of sediments, primarily owing to the large spatial extent of this land use. The spatial pattern of sediment yield to the coast after land use intensification is strongly correlated with the pattern under natural conditions, although the greatest increase is estimated to have occurred in the wet-dry catchments. Sediment transport and resuspension processes have led to the development of a strongly sediment-partitioned shelf, with modern mud-rich sediments almost exclusively restricted to the inner and inner-middle shelf, northward-facing embayments and in the lee of headlands. Elevated sediment concentrations increase the potential transport rates of nutrients and other pollutants. Whether increased sediment supply to the coastal zone has impacted on reefs remains a point of contention. More sediment load data need to be collected and analysed in order to make detailed estimates of catchment yields and establish the possible sediment impact on the Great Barrier Reef.
Resumo:
Two new species of Pseudocreadium are described from off northern Tasmania, P maturini sp. nov. from Meuschenia freycineti and P aubreyi sp. nov. from Acanthaluteres vittiger. They differ from the only other recognised species in the genus by the number of ovarian lobes and by size, and they differ from each other by size, shape, caecal length, forebody length, pre-oral lobe size, uterine position, excretory vesicle length and oral sucker shape. Lobatocreadium exiguum is redescribed from Sufflamen bursa, off Moorea, French Polynesia and Abalistes stellatus, Swain Reefs, Great Barrier Reef, Queensland. Records and measurements are given for Hypocreadium cavum from Sufflamen fraenatus and Lepotrema clavatum from Melichthys vidua, both off Heron Island, Great Barrier Reef, Queensland.
Resumo:
As a component of archaeological investigations on the central Queensland coast, a series of five marine shell specimens live-collected between A.D. 1904 and A.D. 1929 and 11 shell/ charcoal paired samples from archaeological contexts were radiocarbon dated to determine local DeltaR values. The object of the study was to assess the potential influence of localized variation in marine reservoir effect in accurately determining the age of marine and estuarine shell from archaeological deposits in the area. Results indicate that the routinely applied DeltaR value of -5 +/- 35 for northeast Australia is erroneously calculated. The determined values suggest a minor revision to Reimer and Reimer's (2000) recommended value for northeast Australia from DeltaR = +11 +/- 5 to + 12 +/- 7, and specifically for central Queensland to DeltaR = +10 +/- 7, for near-shore open marine environments. In contrast, data obtained from estuarine shell/charcoal pairs demonstrate a general lack of consistency, suggesting estuary-specific patterns of variation in terrestrial carbon input and exchange with the open ocean. Preliminary data indicate that in some estuaries, at some time periods, a DeltaR value of more than - 155 +/- 55 may be appropriate, In estuarine contexts in central Queensland, a localized estuary-specific correction factor is recommended to account for geographical and temporal variation in C-14 activity. (C) 2002 Wiley Periodicals.
Resumo:
In this study the first measurements of DMSP in six species of corals and ten species of benthic algae collected from four coral reefs in the Great Barrier Reef are reported, together with DMSP measurements made on cultured zooxanthellae. Concentrations ranged from 21 to 3831 (mean=743) fmol DMSP zooxanthellae(-1) in corals, 0.16 to 2.96 nmol DMSP cm(-2) (mean=90) for benthic macroalgae, and 48-285 fmol DMSP zooxanthellae(-1) (mean=153) for cultured zooxanthellae. The highest concentrations of DMSP in corals occurred in Acropora formosa (mean= 371 fmol DMSP zooxanthellae(-1)) and Acropora palifera (mean=3341 fmol DMSP zooxanthellae(-1)) with concentrations in A. palifera the highest DMSP concentrations reported in corals examined to date. As well as inter-specific differences in DMSP, intra-specific variation was also observed. Adjacent colonies of A. formosa that are known to have different thermal bleaching thresholds and morphologically distinct zooxanthellae, were also observed to have different DMSP concentrations, with the zooxanthellae in the colony that bleached containing DMSP at an average concentration of 436 finol zooxanthellae(-1), whilst the non-bleaching colony contained DMSP at an average concentration of 171 finol zooxanthellae(-1). The results of the present study have been used to calculate the area normalized DMSP concentrations in benthic algae (mean=0.015 mmol m(-2)) and corals (mean=2.22 mmol m(-2)) from the GBR. This data indicates that benthic algae and corals are a significant reservoir of DMSP in GBR waters. (C) 2002 Published by Elsevier Science Ltd.
Resumo:
We investigated the burst swimming performance of five species of Antarctic fish at -1.0degreesC. The species studied belonged to the suborder, Notothenioidei, and from the families, Nototheniidae and Bathydraconidae. Swimming performance of the fish was assessed over the initial 300 ms of a startle response using surgically attached miniature accelerometers. Escape responses in all fish consisted of a C-type fast start; consisting of an initial pronounced bending of the body into a C-shape, followed by one or more complete tail-beats and an un-powered glide. We found significant differences in the swimming performance of the five species of fish examined, with average maximum swimming velocities (U-max) ranging from 0.91 to 1.39 m s(-1) and maximum accelerations (A(max)) ranging from 10.6 to 15.6 m s(-2). The cryopelagic species, Pagothenia borchgrevinki, produced the fastest escape response, reaching a U-max and A(max) of 1.39 m s(-1) and 15.6 m s(-2), respectively. We also compared the body shapes of each fish species with their measures of maximum burst performance. The dragonfish, Gymnodraco acuticeps, from the family Bathdraconidae, did not conform to the pattern observed for the other four fish species belonging to the family Nototheniidae. However, we found a negative relationship between buoyancy of the fish species and burst swimming performance. (C) 2002 Elsevier Science Ltd. All rights reserved.