100 resultados para knowledge gradient
Resumo:
Numerous hypotheses have been proposed to explain latitudinal gradients in species richness, but all are subject to ongoing debate. Here we examine Rohde's (1978, 1992) hypothesis, which proposes that climatic conditions at low latitudes lead to elevated rates of speciation. This hypothesis predicts that rates of molecular evolution should increase towards lower latitudes, but this prediction has never been tested. We discuss potential links between rates of molecular evolution and latitudinal diversity gradients, and present the first test of latitudinal variation in rates of molecular evolution. Using 45 phylogenetically independent, latitudinally separated pairs of bird species and higher taxa, we compare rates of evolution of two mitochondrial genes and DNA-DNA hybridization distances. We find no support for an effect of latitude on rate of molecular evolution. This result casts doubt on the generality of a key component of Rohde's hypothesis linking climate and speciation.
Resumo:
Most considerations of knowledge management focus on corporations and, until recently, considered knowledge to be objective, stable, and asocial. In this paper we wish to move the focus away from corporations, and examine knowledge and national innovation systems. We argue that the knowledge systems in which innovation takes place are phenomenologically turbulent, a state not made explicit in the change, innovation and socio-economic studies of knowledge literature, and that this omission poses a serious limitation to the successful analysis of innovation and knowledge systems. To address this lack we suggest that three evolutionary processes must be considered: self-referencing, self-transformation and self-organisation. These processes, acting simultaneously, enable system cohesion, radical innovation and adaptation. More specifically, we argue that in knowledge-based economies the high levels of phenomenological turbulence drives these processes. Finally, we spell out important policy principles that derive from these processes.
Resumo:
Knowledge, especially scientific and technological knowledge, grows according to knowledge trajectories and guideposts that make up the prior knowledge of an organization. We argue that these knowledge structures and their specific components lead to successful innovation. A firm's prior knowledge facilitates the absorption of new knowledge, thereby renewing a firm's systematic search, transfer and acquisition of knowledge and capabilities. In particular, the exponential growth in biotechnology is characterized by the convergence of disparate scientific and technological knowledge resources. This paper examines the shift from protein-based to DNA-based diagnostic technologies as an example, to quantify the value of a firm's prior knowledge using relative values of knowledge distance. The distance between core prior knowledge and the rate of transition from one knowledge system to another has been identified as a proxy for the value a firm's prior knowledge. The overall difficulty of transition from one technology paradigm to another is discussed. We argue this transition is possible when the knowledge distance is minimal and the transition process has a correspondingly high value of absorptive capacities. Our findings show knowledge distance is a determinant of the feasibility, continuity and capture of scientific and technological knowledge. Copyright © 2003 John Wiley & Sons, Ltd.
Resumo:
This paper delineates the development of a prototype hybrid knowledge-based system for the optimum design of liquid retaining structures by coupling the blackboard architecture, an expert system shell VISUAL RULE STUDIO and genetic algorithm (GA). Through custom-built interactive graphical user interfaces under a user-friendly environment, the user is directed throughout the design process, which includes preliminary design, load specification, model generation, finite element analysis, code compliance checking, and member sizing optimization. For structural optimization, GA is applied to the minimum cost design of structural systems with discrete reinforced concrete sections. The design of a typical example of the liquid retaining structure is illustrated. The results demonstrate extraordinarily converging speed as near-optimal solutions are acquired after merely exploration of a small portion of the search space. This system can act as a consultant to assist novice designers in the design of liquid retaining structures.
Resumo:
This paper describes a coupled knowledge-based system (KBS) for the design of liquid-retaining structures, which can handle both the symbolic knowledge processing based on engineering heuristics in the preliminary synthesis stage and the extensive numerical crunching involved in the detailed analysis stage. The prototype system is developed by employing blackboard architecture and a commercial shell VISUAL RULE STUDIO. Its present scope covers design of three types of liquid-retaining structures, namely, a rectangular shape with one compartment, a rectangular shape with two compartments and a circular shape. Through custom-built interactive graphical user interfaces, the user is directed throughout the design process, which includes preliminary design, load specification, model generation, finite element analysis, code compliance checking and member sizing optimization. It is also integrated with various relational databases that provide the system with sectional properties, moment and shear coefficients and final member details. This system can act as a consultant to assist novice designers in the design of liquid-retaining structures with increase in efficiency and optimization of design output and automated record keeping. The design of a typical example of the liquid-retaining structure is also illustrated. (C) 2003 Elsevier B.V All rights reserved.
Resumo:
Prior theoretical studies indicate that the negative spatial derivative of the electric field induced by magnetic stimulation may he one of the main factors contributing to depolarization of the nerve fiber. This paper studies this parameter for peripheral nerve stimulation (PNS) induced by time.-varying gradient fields during MRI scans. The numerical calculations are based on an efficient, quasi-static, finite-difference scheme and an anatomically realistic human, full-body model. Whole-body cylindrical and planar gradient sets in MRI systems and various input signals have been explored. The spatial distributions of the induced electric field and their gradients are calculated and attempts are made to correlate these areas with reported experimental stimulation data. The induced electrical field pattern is similar for both the planar coils and cylindrical coils. This study provides some insight into the spatial characteristics of the induced field gradients for PNS in MRI, which may be used to further evaluate the sites where magnetic stimulation is likely to occur and to optimize gradient coil design.
Resumo:
In standard cylindrical gradient coils consisting of a single layer of wires, a limiting factor in achieving very large magnetic field gradients is the rapid increase in coil resistance with efficiency. This is a particular problem in small-bore scanners, such as those used for MR microscopy. By adopting a multi-layer design in which the coil wires are allowed to spread out into multiple layers wound at increasing radii, a more favourable scaling of resistance with efficiency is achieved, thus allowing the design of more powerful gradient coils with acceptable resistance values. Previously this approach has been applied to the design of unshielded, longitudinal, and transverse gradient coils. Here, the multi-layer approach has been extended to allow the design of actively shielded multi-layer gradient coils, and also to produce coils exhibiting enhanced cooling characteristics. An iterative approach to modelling the steady-state temperature distribution within the coil has also been developed. Results indicate that a good level of screening can be achieved in multi-layer coils, that small versions of such coils can yield higher efficiencies at fixed resistance than conventional two-layer (primary and screen) coils, and that performance improves as the number of layers of increases. Simulations show that by optimising multi-layer coils for cooling it is possible to achieve significantly higher gradient strengths at a fixed maximum operating temperature. A four-layer coil of 8 mm inner diameter has been constructed and used to test the steady-state temperature model. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
In small, cylindrical gradient coils consisting of a single layer of wires, the limiting factor in achieving large magnetic field gradients is the rapid increase in coil resistance with efficiency. This behavior results from the decrease in the maximum usable wire diameter as the number of turns is increased. By adopting a multilayer design in which the coil wires are allowed to spread out into multiple layers wound at increasing radii, a more favorable scaling of resistance with efficiency is achieved, thus allowing the design of more powerful gradient coils with acceptable resistance values. By extending the theory used to design standard cylindrical gradient coils, mathematical expressions have been developed that allow the design of multilayer coils. These expressions have previously been applied to the design of a four-layer z-gradient coil. As a further development, the equations have now been modified to allow the design of multilayer transverse gradient coils. The variation in coil performance with the number of layers employed has been investigated for coils of a size suitable for use in NMR microscopy, and the effect of constructing the coil using wires or cuts in a continuous conducting surface has also been assessed. We find that at fixed resistance a small wire-wound two-layer coil offers an increase in efficiency of a factor of about 1.5 compared with a single-layer coil. In addition, a two-layer coil of 10-mm inner diameter has been designed and built. This coil had an efficiency of 0.41 Tm-1 A(-1), a resistance of 0.96 +/- 0.01 Omega, and an inductance of 22.3 +/- 0.2 muH. The coil produces a gradient that deviates from linearity by less than 5% over a central cylindrical region of interest of height and length 6.2 mm. (C) 2003 Wiley Periodicals, Inc.
Resumo:
The People in Pain course was set up as a joint initiative of the Departments of Occupational Therapy and Physiotherapy within the School of Health and Rehabilitation Sciences at The University of Queensland. It was instigated in response to the publication of Pain Curricula for Occupational Therapy and Physiotherapy by the International Association for the Study of Pain (IASP) in 1994 (1). The first year it was offered, the "People in Pain" course comprised 14 h of lecture content. It was then expanded to encompass 28 h of lectures and seminar involvement. OBJECTIVES: To evaluate the impact of participation in a university pain course that meets the IASP pain curricula guidelines to increase health professional students' knowledge about pain. METHODS: Students who participated in the People in Pain course over the first three years were invited to complete the Revised Pain Knowledge and Attitudes Questionnaire (R-PKAQ) pre- and postcourse. Data obtained from 22 students in the short course formed a pilot project, and data from 22 students in the longer version of the course were used in the present study. RESULTS: Examination of the correlation matrix indicated substantial correlations between all R-PKAQ subscales except physiological basis of pain and pharmacological management of pain. In both the pilot project during the first year of the course and the expanded course in the following two years, significant improvement was found in the students' knowledge on five of the six subscales of the R-PKAQ: physiological basis of pain, psychological factors of pain perception, assessment and measurement of pain, cognitive-behavioural methods of pain relief, and pharmacological management of pain. Improvements in the developmental aspects of pain perception subscale failed to reach significance. CONCLUSIONS: An integrated pain course developed according to the pain curriculum guidelines developed by the IASP resulted in increased student knowledge regardless of the length of the program attended.