96 resultados para flexible manipulators
Resumo:
The particle-based Lattice Solid Model (LSM) was developed to provide a basis to study the physics of rocks and the nonlinear dynamics of earthquakes (MORA and PLACE, 1994; PLACE and MORA, 1999). A new modular and flexible LSM approach has been developed that allows different microphysics to be easily included in or removed from the model. The approach provides a virtual laboratory where numerical experiments can easily be set up and all measurable quantities visualised. The proposed approach provides a means to simulate complex phenomena such as fracturing or localisation processes, and enables the effect of different micro-physics on macroscopic behaviour to be studied. The initial 2-D model is extended to allow three-dimensional simulations to be performed and particles of different sizes to be specified. Numerical bi-axial compression experiments under different confining pressure are used to calibrate the model. By tuning the different microscopic parameters (such as coefficient of friction, microscopic strength and distribution of grain sizes), the macroscopic strength of the material and can be adjusted to be in agreement with laboratory experiments, and the orientation of fractures is consistent with the theoretical value predicted based on Mohr-Coulomb diagram. Simulations indicate that 3-D numerical models have different macroscopic properties than in 2-D and, hence, the model must be recalibrated for 3-D simulations. These numerical experiments illustrate that the new approach is capable of simulating typical rock fracture behaviour. The new model provides a basis to investigate nucleation, rupture and slip pulse propagation in complex fault zones without the previous model limitations of a regular low-level surface geometry and being restricted to two-dimensions.
Resumo:
Using benthic habitat data from the Florida Keys (USA), we demonstrate how siting algorithms can help identify potential networks of marine reserves that comprehensively represent target habitat types. We applied a flexible optimization tool-simulated annealing-to represent a fixed proportion of different marine habitat types within a geographic area. We investigated the relative influence of spatial information, planning-unit size, detail of habitat classification, and magnitude of the overall conservation goal on the resulting network scenarios. With this method, we were able to identify many adequate reserve systems that met the conservation goals, e.g., representing at least 20% of each conservation target (i.e., habitat type) while fulfilling the overall aim of minimizing the system area and perimeter. One of the most useful types of information provided by this siting algorithm comes from an irreplaceability analysis, which is a count of the number of, times unique planning units were included in reserve system scenarios. This analysis indicated that many different combinations of sites produced networks that met the conservation goals. While individual 1-km(2) areas were fairly interchangeable, the irreplaceability analysis highlighted larger areas within the planning region that were chosen consistently to meet the goals incorporated into the algorithm. Additionally, we found that reserve systems designed with a high degree of spatial clustering tended to have considerably less perimeter and larger overall areas in reserve-a configuration that may be preferable particularly for sociopolitical reasons. This exercise illustrates the value of using the simulated annealing algorithm to help site marine reserves: the approach makes efficient use of;available resources, can be used interactively by conservation decision makers, and offers biologically suitable alternative networks from which an effective system of marine reserves can be crafted.
Resumo:
Free independent travelers require flexible, reactive service delivery due to their regularly changing location and activities and the lack of a wired Internet connection. A ubiquitous travel service delivery system that is able to dynamically deliver services in response to relevant events, such as changing location, availability of new last-minute specials, work opportunities, and safety issues can provide added value while retaining the flexibility that is so important to independent travelers. This article describes such a system. An engineering design research approach has been adopted to design the system. Issues addressed include traveler and service states and events, contexts, situations, and situation-action rules. An architecture is proposed that is based on distributed, cooperating software agents and mobile data technologies. The role of these agents is to continuously monitor situations that are occurring in the physical and virtual service spaces and to take the required action for any situations that are relevant to the traveler.
Resumo:
Distance learners are self-directed learners traditionally taught via study books, collections of readings, and exercises to test understanding of learning packages. Despite advances in e-Learning environments and computer-based teaching interfaces, distance learners still lack opportunities to participate in exercises and debates available to classroom learners, particularly through non-text based learning techniques. Effective distance teaching requires flexible learning opportunities. Using arguments developed in interpretation literature, we argue that effective distance learning must also be Entertaining, Relevant, Organised, Thematic, Involving and Creative—E.R.O.T.I.C. (after Ham, 1992). We discuss an experiment undertaken with distance learners at The University of Queensland Gatton Campus, where we initiated an E.R.O.T.I.C. external teaching package aimed at engaging distance learners but using multimedia, including but not limited to text-based learning tools. Student responses to non-text media were positive.
Resumo:
Sulfite dehydrogenase (SDH) from Starkeya novella, a sulfite-oxidizing molybdenum-containing enzyme, has a novel tightly bound αβ-heterodimeric structure in which the Mo cofactor and the c-type heme are located on different subunits. Flash photolysis studies of intramolecular electron transfer (IET) in SDH show that the process is first-order, independent of solution viscosity, and not inhibited by sulfate, which strongly indicates that IET in SDH proceeds directly through the protein medium and does not involve substantial movement of the two subunits relative to each other. The IET results for SDH contrast with those for chicken and human sulfite oxidase (SO) in which the molybdenum domain is linked to a b-type heme domain through a flexible loop, and IET shows a remarkable dependence on sulfate concentration and viscosity that has been ascribed to interdomain docking. The results for SDH provide additional support for the interdomain docking hypothesis in animal SO and clearly demonstrate that dependence of IET on viscosity and sulfate is not an inherent property of all sulfite-oxidizing molybdenum enzymes.
Resumo:
This paper describes a process-based metapopulation dynamics and phenology model of prickly acacia, Acacia nilotica, an invasive alien species in Australia. The model, SPAnDX, describes the interactions between riparian and upland sub-populations of A. nilotica within livestock paddocks, including the effects of extrinsic factors such as temperature, soil moisture availability and atmospheric concentrations of carbon dioxide. The model includes the effects of management events such as changing the livestock species or stocking rate, applying fire, and herbicide application. The predicted population behaviour of A. nilotica was sensitive to climate. Using 35 years daily weather datasets for five representative sites spanning the range of conditions that A. nilotica is found in Australia, the model predicted biomass levels that closely accord with expected values at each site. SPAnDX can be used as a decision-support tool in integrated weed management, and to explore the sensitivity of cultural management practices to climate change throughout the range of A. nilotica. The cohort-based DYMEX modelling package used to build and run SPAnDX provided several advantages over more traditional population modelling approaches (e.g. an appropriate specific formalism (discrete time, cohort-based, process-oriented), user-friendly graphical environment, extensible library of reusable components, and useful and flexible input/output support framework). (C) 2003 Published by Elsevier Science B.V.