131 resultados para cellular biology
Resumo:
GLUT4 is a mammalian facilitative glucose transporter that is highly expressed in adipose tissue and striated muscle. In response to insulin, GLUT4 moves from intracellular storage areas to the plasma membrane, thus increasing cellular glucose uptake. While the verification of this 'translocation hypothesis' (Cushman SW. Wardzala LJ. J Biol Chem 1980;255: 4758-4762 and Suzuki K, Kono T. Proc Natl Acad Sci 1980;77: 2542-2545) has increased our understanding of insulin-regulated glucose transport, a number of fundamental questions remain unanswered. Where is GLUT4 stored within the basal cell? How does GLUT4 move to the cell surface and what mechanism does insulin employ to accelerate this process) Ultimately we require a convergence of trafficking studies with research in signal transduction. However, despite more than 30 years of intensive research we have still not reached this point. The problem is complex, involving at least two separate signal transduction pathways which feed into what appears to be a very dynamic sorting process. Below we discuss some of these complexities and highlight new data that are bringing us closer to the resolution of these questions.
Resumo:
The formation of testes or ovaries in the mammalian embryo is critical in determining sexual identity and the ability to reproduce. Recent studies have begun to illuminate the cellular signalling events required for development of functional testes. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
We have studied the spatial dynamics of Sry transcription in the genital ridges of mouse embryos. We find that Sry is expressed in a dynamic wave that emanates from the central and/or anterior regions, extends subsequently to both poles, and ends in the caudal pole. This dynamism may explain the relative positioning of ovarian and testicular tissue seen in ovotestes in mice. Since direct regulatory targets of SRY ought to be expressed in a corresponding or complimentary wave, our observations pave the way for identification of target genes. Sry is expressed in internal cells but not in coelomic surface epithelial cells, indicating that its effect on proliferation of surface cells is achieved non-cell-autonomously. The cellular dynamism of Sry expression revealed in this study thus provides important insights into both the cellular and molecular mode of action of SRY, and how perturbations in Sry expression can lead to anomalies of sexual development. (C) 2001 Wiley-Liss, Inc.
Resumo:
High levels of mortality in the Mediterranean bath sponge industry have raised concerns for the future of sponge farms. Healthy sponges feed predominantly on bacteria, and many harbour a wide diversity of inter- and extra-cellular symbiotic bacteria. Here we describe the first isolation and description of a pathogenic bacterium from an infected marine sponge. Microbiological examination of tissue necrosis in the Great Barrier Reef sponge Rhopaloeides odorabile resulted in isolation of the bacterial strain NW4327. Sponges infected with strain NW4327 exhibited high levels of external tissue necrosis, and the strain was re-isolated from infected sponges. A single morphotype, which had burrowed through the collagenous spongin fibres causing severe necrosis, was observed microscopically. Strain NW4327 was capable of degrading commercial preparations of azo-collagen, providing further evidence of its involvement in spongin fibre necrosis, Strain NW4327 disrupted the microbial community associated with R. odorabile and was able to infect and kill healthy sponge tissue. 16S rRNA sequence analysis revealed that strain NW4327 is a novel member of the alpha-proteobacteria.
Resumo:
Secondary metabolites synthesised by sessile invertebrates appear to play a role in creating and maintaining space on hard substrata by repelling competitors. In this study, we investigated the responses of the larvae of the ascidian Herdmania curvata to haliclonacyclamine A (HA), the major component of a suite of cytotoxic alkaloids extracted from the sponge Haliclona sp. 628. Both Haliclona sp. 628 and Herdmania curvata inhabit the crest and slope of Heron Island Reef. High rates of settlement were induced in competent H. curvata larvae by a range of concentrations of HA, all lower than that naturally occurring in the sponge. HA did not induce precompetent larvae to settle. Although early metamorphosis of HA-induced larvae was normal, larvae exposed to all but the lowest concentration of HA were developmentally arrested after completion of tail resorption, at about 4 h after the initiation of metamorphosis. These postlarvae underwent extensive cellular necrosis within 24 h. We also demonstrate that the addition of a transcriptional inhibitor, actinomycin D, to larvae also causes inhibition of metamorphosis after tail resorption is completed. Analyses of incorporation of radiolabelled nucleotides to measure levels of transcription during normal development and after the addition of the transcriptional inhibitor indicate that there is a significant burst of transcriptional activity just after tail resorption is completed. Despite inhibiting metamorphosis at the same stage as actinomycin D, HA increases initial rates of RNA synthesis after induction of metamorphosis in a manner similar to that observed in normal postlarvae until the onset of cellular necrosis. We conclude that HA initially induces H. curvata larvae to settle and progress through early metamorphosis possibly by engaging the same pathway as other artificial and environmental cues but subsequently inhibits completion of metamorphosis, resulting in death of the postlarvae. Since HA does not affect overall transcription rates, it appears to disrupt another important developmental process during early metamorphosis.
Resumo:
The suitable use of array antennas in cellular systems results in improvement in the signal-to-interference ratio (StR), This property is the basis for introducing smart or adaptive antenna systems. in general, the SIR depends on the array configuration and is a function of the direction of the desired user and interferers. Here, the SIR performance for linear and circular arrays is analysed and compared.
Resumo:
The three-dimensional structures of leucine-rich repeat (LRR) -containing proteins from five different families were previously predicted based on the crystal structure of the ribonuclease inhibitor. using an approach that combined homology-based modeling, structure-based sequence alignment of LRRs, and several rational assumptions. The structural models have been produced based on very limited sequence similarity, which, in general. cannot yield trustworthy predictions. Recently, the protein structures from three of these five families have been determined. In this report we estimate the quality of the modeling approach by comparing the models with the experimentally determined structures. The comparison suggests that the general architecture, curvature, interior/exterior orientations of side chains. and backbone conformation of the LRR structures can be predicted correctly. On the other hand. the analysis revealed that, in some cases. it is difficult to predict correctly the twist of the overall super-helical structure. Taking into consideration the conclusions from these comparisons, we identified a new family of bacterial LRR proteins and present its structural model. The reliability of the LRR protein modeling suggests that it would be informative to apply similar modeling approaches to other classes of solenoid proteins.
Resumo:
To address the hypothesis that certain disease-associated mutants of the breast-ovarian cancer susceptibility gene BRCA1 have biological activity in vivo, we have expressed a truncated Brca1 protein (trBrca1) in cell-lines and in the mammary gland of transgenic mice. Immunofluorescent analysis of transfected cell-lines indicates that trBRCA1 is a stable protein and that it is localized in the cell cytoplasm. Functional analysis of these cell-lines indicates that expression of trBRCA1 confers an increased radiosensitivity phenotype on mammary epithelial cells, consistent with abrogation of the BRCA1 pathway. MMTV-trBrca1 transgenic mice from two independent lines displayed a delay in lactational mammary gland development, as demonstrated by altered histological profiles of lobuloalveolar structures. Cellular and molecular analyses indicate that this phenotype results from a defect in differentiation, rather than altered rates of proliferation or apoptosis. The results presented in this paper are consistent with trBrca1 possessing dominant-negative activity and playing an important role in regulating normal mammary development. They may also have implications for germline carriers of BRCA1 mutations.
Resumo:
Fibroblast growth factor receptor (FGFR) signalling is important in the initiation and regulation of osteogenesis. Although mutations in FGFR1, 2 and 3 genes are known to cause skeletal deformities, the expression of FGFR4 in bony tissue remains unclear. We have investigated the expression pattern of FGFR4 in the neonatal mouse calvaria and compared it to the expression pattern in cultures of primary osteoblasts. Immunohistochemistry demonstrated that FGFR4 was highly expressed in rudimentary membranous bone and strictly localised to the cellular components (osteoblasts) between the periosteal and endosteal layers. Cells in close proximity to the newly formed osteoid (preosteoblasts) also expressed FGFR4 on both the endosteal and periosteal surfaces. Immunocytochemical analysis of primary osteoblast cultures taken from the same cranial region also revealed high levels of FGFR4 expression, suggesting a similar pattern of cellular expression in vivo and in vitro. RT-PCR and Western blotting for FGFR4 confirmed its presence in primary osteoblast cultures. These results suggest that FGFR4 may be an important regulator of osteogenesis with involvement in preosteoblast proliferation and differentiation as well as osteoblast functioning during intramembranous ossification. The consistent expression of FGFR4 in vivo and in vitro supports the use of primary osteoblast cultures for elucidating the role of FGFR4 during osteogenesis.