98 resultados para archean nucleus


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mature euspermatozoan ultrastructure is described for seven species of the rissooidean family Baicaliidae (endemic to Lake Baikal, Russia)-Liobaicalia stiedae, Teratobaikalia ciliata, T. macrostoma, Baicalia carinata, Pseudobaikalia pulla, Maackia bythiniopsis, M. variesculpta, and M. herderiana. For comparison with these species and previously investigated Rissooidea, two species of the Lake Baikal endemic genus Benedictia (B. cf. fragilis and B. baicalensis; Hydrobiidae: Benedictiinae of some authors, Benedictiidae of other authors) in addition to Lithoglyphus naticoides (Hydrobiidae: Lithoglyphinae) and Bythinella austriaca (Hydrobiidae: Bythinellinae) were also investigated. Paraspermatozoa were not observed in any of the species examined, supporting the view that these cells are probably absent in the Rissooidea. In general, the euspermatozoa of all species examined resemble those of many other caenogastropods (basally invaginated acrosomal vesicle, mid-piece with 7-13 helical mitochondria, an annulus, glycogen piece with nine peri-axonemal tracts of granules). However, the presence of a completely flattened acrosomal vesicle and a specialized peri-axonemal membranous sheath (a scroll-like arrangement of 4-6 double membranes) at the termination of the mid-piece, clearly indicates a close relationship between the Baicaliidae and other rissooidean families possessing these features (Bithyniidae, Hydrobiidae, Pyrgulidae, and Stenothyridae). Euspermatozoa of Benedictia, Lithoglyphus, Bythinella, and Pyrgula all have a solid nucleus, which exhibits a short, posterior invagination (housing the centriolar complex and proximal portion of the axoneme). Among the Rissooidea, this form of nucleus is known to occur in the Bithyniidae, Hydrobiidae, Truncatellidae, Pyrgulidae, Iravadiidae, Pomatiopsidae, and Stenothyridae. In contrast, the euspermatozoa of the Baicaliidae all have a long, tubular nucleus, housing not only the centriolar derivative, but also a substantial portion of the axoneme. Among the Rissooidea, a tubular nuclear morphology has previously been seen in the Rissoidae, which could support the view, based on anatomical grounds, that the Baicaliidae may have arisen from a different ancestral source than the Hydrobiidae. However, the two styles of nuclear morphology (short, solid versus long, tubular) occur widely within the Caenogastropoda, and sometimes both within a single family, thereby reducing the phylogenetic importance of nuclear differences within the Rissooidea. More significantly, the occurrence of the highly unusual membranous sheath within the mid-piece region in the Baicaliidae appears to tie this family firmly to the Bithyniidae + Hydrobiidae + Stenothyridae + Pyrgulidae assemblage. Eusperm features of Benedictia spp. strongly resemble those of hydrobiids and bithyniids, and neither support recognition of a distinct family Benedictiidae (at best this is a subfamily of Hydrobiidae) nor any close connection with the hydrobiid subfamily Lithoglyphinae.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The central nucleus of the amygdala (CeA) is activated robustly by an immune challenge such as the systemic administration of the proinflammatory cytokine interleukin-1beta (IL-1beta). Because IL-1beta is not believed to cross the blood-brain barrier in any significant amount, it is likely that IL-1beta elicits CeA cell recruitment by means of activation of afferents to the CeA. However, although many studies have investigated the origins of afferent inputs to the CeA, we do not know which of these also respond to IL-1beta. Therefore, to identify candidate neurons responsible for the recruitment of CeA cells by an immune challenge, we iontophoretically deposited a retrograde tracer, cholera toxin b-subunit (CTb), into the CeA of rats 7 days before systemic delivery of IL-1beta (1 mug/kg, i.a.). By using combined immunohistochemistry, we then quantified the number of Fos-positive CTb cells in six major regions known to innervate the CeA. These included the medial prefrontal cortex, paraventricular thalamus (PVT), ventral tegmental area, parabrachial nucleus (PB), nucleus tractus solitarius, and ventrolateral medulla. Our results show that after deposit of CTb into the CeA, the majority of double-labeled cells were located in the PB and the PVT, suggesting that CeA cell activation by systemic IL-1beta is likely to arise predominantly from cell bodies located in these regions. These findings may have significant implications in determining the central pathways involved in generating acute central responses to a systemic immune challenge. J. Comp. Neurol. 452:288-296, 2002. (C) 2002 Wiley-Liss, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Psychological stressors trigger the activation of medullary noradrenergic cells, an effect that has been shown to depend upon yet-to-be-identified structures located higher in the brain. To test whether the amygdala is important in this regard, we examined the effects of amygdala lesions on noradrenergic cell responses to restraint, and also looked at whether any amygdala cells that respond to restraint project directly to the medulla. Ibotenic acid lesions of the medial amygdala completely abolished restraint-induced Fos expression in A1 and A2 noradrenergic cells. In contrast, lesions of the central amygdala actually facilitated noradrenergic cell responses to restraint. Tracer deposits in the dorsomedial (but not ventrolateral) medulla retrogradely labelled many cells in the central nucleus of the amygdala, but none of these cells expressed Fos in response to restraint. These data suggest for the first time that the medial amygdala is critical to the activation of medullary noradrenergic cells by a psychological stressor whereas the central nucleus exerts an opposing, inhibitory influence upon noradrenergic cell recruitment. The initiation of noradrenergic cell responses by the medial amygdala does not involve a direct projection to the medulla. Accordingly, a relay through some other structure, such as the hypothalamic paraventricular nucleus, warrants careful consideration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The distribution and cellular morphology of serotonergic neurons in the brain of two species of monotremes are described. Three clusters of serotonergic neurons were found: a hypothalamic cluster, a cluster in the rostral brainstem and a cluster in the caudal brainstem. Those in the hypothalamus consisted of two groups, the periventricular hypothalamic organ and the infundibular recess, that were intimately associated with the ependymal wall of the third ventricle. Within the rostral brainstem cluster, three distinct divisions were found: the dorsal raphe nucleus (with four subdivisions), the median raphe nucleus and the cells of the supralemniscal region. The dorsal raphe was within and adjacent to the periaqueductal gray matter, the median raphe was associated with the midline ventral to the dorsal raphe, and the cells of the supralemniscal region were in the tegmentum lateral to the median raphe and ventral to the dorsal raphe. The caudal cluster consisted of three divisions: the raphe obscurus nucleus, the raphe pallidus nucleus and the raphe magnus nucleus. The raphe obscurus nucleus was associated with the dorsal midline at the caudal-most part of the medulla oblongata. The raphe pallidus nucleus was found at the ventral midline of the medulla around the inferior olive. Raphe magnus was associated with the midline of the medulla and was found rostral to both the raphe obscurus and raphe pallidus. The results of our study are compared in an evolutionary context with those reported for other mammals and reptiles. Copyright (C) 2002 S. Karger AG, Basel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study employs choline acetyltransferase (ChAT) immunohistochemistry to identify the cholinergic neuronal population in the central nervous system of the monotremes. Two of the three extant species of monotreme were studied: the platypus (Omithorhynchus anatinus) and the short-beaked echidna (Tachyglossus aculeatus). The distribution of cholinergic cells in the brain of these two species was virtually identical. Distinct groups of cholinergic cells were observed in the striatum, basal forebrain, habenula, pontomesencephalon, cranial nerve motor nuclei, and spinal cord. In contrast to other tetrapods studied with this technique, we failed to find evidence for cholinergic cells in the hypothalamus, the parabigeminal nucleus (or nucleus isthmus), or the cerebral cortex. The lack of hypothalamic cholinergic neurons creates a hiatus in the continuous antero-posterior aggregation of cholinergic neurons seen in other tetrapods. This hiatus might be functionally related to the phenomenology of monotreme sleep and to the ontogeny of sleep in mammals, as juvenile placental mammals exhibit a similar combination of sleep elements to that found in adult monotremes. Copyright (C) 2002 S. Karger AG, Basel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The spermatozoa of Gymnophiona show the following autapomorphies: 1) penetration of the distal centriole by the axial fiber; 2) presence of an acrosomal baseplate; 3) presence of an acrosome seat (flattened apical end of nucleus); and 4) absence of juxta-axonemal fibers. The wide separation of the plasma membrane bounding the undulating membrane is here also considered to be apomorphic. Three plesiomorphic spermatozoal characters are recognized that are not seen in other Amphibia but occur in basal amniotes: 1) presence of mitochondria with a delicate array of concentric cristae (concentric cristae of salamander spermatozoa differ in lacking the delicate array); 2) presence of peripheral dense fibers associated with the triplets of the distal centriole; and 3) presence of a simple annulus (a highly modified, elongate annulus is present in salamander sperm). The presence of an endonuclear canal containing a perforatorium is a plesiomorphic feature of caecilian spermatozoa that is shared with urodeles, some basal anurans, sarcopterygian fish, and some amniotes. Spermatozoal synapornorphies are identified for 1) the Uraeotyphlidae and Ichthyophiidae, an 2) the Caeciliidae and Typhlonectidae, suggesting that the members of each pair of families are more closely related to each other than to other caecilians. Although caecilian spermatozoa exhibit the clear amphibian synapomorphy of the unilateral location of the undulating membrane and its axial fiber, they have no apomorphic characters that suggest a closer relationship to either the Urodela or Axiura. J. Morphol. 258:179-192, 2003. (C) 2003 Wiley-Liss, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of human brain tissue obtained at autopsy for neurochemical, pharmacological and physiological analyses is reviewed. RNA and protein samples have been found suitable for expression profiling by techniques that include RT-PCR, cDNA microarrays, western blotting, immunohistochemistry and proteomics. The rapid development of molecular biological techniques has increased the impetus for this work to be applied to studies of brain disease. It has been shown that most nucleic acids and proteins are reasonably stable post-mortem. However, their abundance and integrity can exhibit marked intra- and intercase variability, making comparisons between case-groups difficult. Variability can reveal important functional and biochemical information. The correct interpretation of neurochemical data must take into account such factors as age, gender, ethnicity, medicative history, immediate ante-mortem status, agonal state and post-mortem and post-autopsy intervals. Here we consider issues associated with the sampling of DNA, RNA and proteins using human autopsy brain tissue in relation to various ante- and post-mortem factors. We conclude that valid and practical measures of a variety of parameters may be made in human brain tissue, provided that specific factors are controlled.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The impact of basal ganglia dysfunction on semantic processing was investigated by comparing the performance of individuals with nonthalamic subcortical (NS) vascular lesions, Parkinson's disease (PD), cortical lesions, and matched controls on a semantic priming task. Unequibiased lexical ambiguity primes were used in auditory prime-target pairs comprising 4 critical conditions; dominant related (e.g., bank-money), subordinate related (e.g., bank-river), dominant unrelated (e.g.,foot-money) and subordinate unrelated (e.g., bat-river). Participants made speeded lexical decisions (word/nonword) on targets using a go-no-go response. When a short prime-target interstimulus interval (ISI) of 200 ins was employed, all groups demonstrated priming for dominant and subordinate conditions, indicating nonselective meaning facilitation and intact automatic lexical processing. Differences emerged at the long ISI (1250 ms), where control and cortical lesion participants evidenced selective facilitation of the dominant meaning, whereas NS and PD groups demonstrated a protracted period of nonselective meaning facilitation. This finding suggests a circumscribed deficit in the selective attentional engagement of the semantic network on the basis of meaning frequency, possibly implicating a disturbance of frontal-subcortical systems influencing inhibitory semantic mechanisms.