120 resultados para Standard method
Resumo:
Six of the short dietary questions used in the 1995 National Nutrition Survey (see box below) were evaluated for relative validity both directly and indirectly and for consistency, by documenting the differences in mean intakes of foods and nutrients as measured on the 24-hour recall, between groups with different responses to the short questions. 1. Including snacks, how many times do you usually have something to eat in a day including evenings? 2. How many days per week do you usually have something to eat for breakfast? 3. In the last 12 months, were there any times that you ran out of food and couldn’t afford to buy more? 4. What type of milk do you usually consume? 5. How many serves of vegetables do you usually eat each day? (a serve = 1/2 cup cooked vegetables or 1 cup of salad vegetables) 6. How many serves of fruit do you usually eat each day? (a serve = 1 medium piece or 2 small pieces of fruit or 1 cup of diced pieces) These comparisons were made for males and females overall and for population sub-groups of interest including: age, socio-economic disadvantage, region of residence, country of birth, and BMI category. Several limitations to this evaluation of the short questions, as discussed in the report, need to be kept in mind including: · The method for comparison available (24-hour recall) was not ideal (gold standard); as it measures yesterday’s intake. This limitation was overcome by examining only mean differences between groups of respondents, since mean intake for a group can provide a reasonable approximation for ‘usual’ intake. · The need to define and identify, post-hoc, from the 24-hour recall the number of eating occasions, and occasions identified by the respondents as breakfast. · Predetermined response categories for some of the questions effectively limited the number of categories available for evaluation. · Other foods and nutrients, not selected for this evaluation, may have an indirect relationship with the question, and might have shown stronger and more consistent responses. · The number of responses in some categories of the short questions eg for food security may have been too small to detect significant differences between population sub-groups. · No information was available to examine the validity of these questions for detecting differences over time (establishing trends) in food habits and indicators of selected nutrient intakes. By contrast, the strength of this evaluation was its very large sample size, (atypical of most validation studies of dietary assessment) and thus, the opportunity to investigate question performance in a range of broad population sub-groups compared with a well-conducted, quantified survey of intakes. The results of the evaluation are summarised below for each of the questions and specific recommendations for future testing, modifications and use provided for each question. The report concludes with some general recommendations for the further development and evaluation of short dietary questions.
Resumo:
OBJECTIVES: 1. To critically evaluate a variety of mathematical methods of calculating effective population size (Ne) by conducting comprehensive computer simulations and by analysis of empirical data collected from the Moreton Bay population of tiger prawns. 2. To lay the groundwork for the application of the technology in the NPF. 3. To produce software for the calculation of Ne, and to make it widely available.
Resumo:
In this paper we present the composite Euler method for the strong solution of stochastic differential equations driven by d-dimensional Wiener processes. This method is a combination of the semi-implicit Euler method and the implicit Euler method. At each step either the semi-implicit Euler method or the implicit Euler method is used in order to obtain better stability properties. We give criteria for selecting the semi-implicit Euler method or the implicit Euler method. For the linear test equation, the convergence properties of the composite Euler method depend on the criteria for selecting the methods. Numerical results suggest that the convergence properties of the composite Euler method applied to nonlinear SDEs is the same as those applied to linear equations. The stability properties of the composite Euler method are shown to be far superior to those of the Euler methods, and numerical results show that the composite Euler method is a very promising method. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
This article discusses the design of a comprehensive evaluation of a community development programme for young people 'at-risk' of self-harming behaviour. It outlines considerations in the design of the evaluation and focuses on the complexities and difficulties associated with the evaluation of a community development programme. The challenge was to fulfil the needs of the funding body for a broad, outcome-focused evaluation while remaining close enough to the programme to accurately represent its activities and potential effects at a community level. Specifically, the strengths and limitations of a mixed-method evaluation plan are discussed with recommendations for future evaluation practice.
Resumo:
A new wavelet-based method for solving population balance equations with simultaneous nucleation, growth and agglomeration is proposed, which uses wavelets to express the functions. The technique is very general, powerful and overcomes the crucial problems of numerical diffusion and stability that often characterize previous techniques in this area. It is also applicable to an arbitrary grid to control resolution and computational efficiency. The proposed technique has been tested for pure agglomeration, simultaneous nucleation and growth, and simultaneous growth and agglomeration. In all cases, the predicted and analytical particle size distributions are in excellent agreement. The presence of moving sharp fronts can be addressed without the prior investigation of the characteristics of the processes. (C) 2001 Published by Elsevier Science Ltd.
Model-based procedure for scale-up of wet, overflow ball mills - Part III: Validation and discussion
Resumo:
A new ball mill scale-up procedure is developed. This procedure has been validated using seven sets of Ml-scale ball mil data. The largest ball mills in these data have diameters (inside liners) of 6.58m. The procedure can predict the 80% passing size of the circuit product to within +/-6% of the measured value, with a precision of +/-11% (one standard deviation); the re-circulating load to within +/-33% of the mass-balanced value (this error margin is within the uncertainty associated with the determination of the re-circulating load); and the mill power to within +/-5% of the measured value. This procedure is applicable for the design of ball mills which are preceded by autogenous (AG) mills, semi-autogenous (SAG) mills, crushers and flotation circuits. The new procedure is more precise and more accurate than Bond's method for ball mill scale-up. This procedure contains no efficiency correction which relates to the mill diameter. This suggests that, within the range of mill diameter studied, milling efficiency does not vary with mill diameter. This is in contrast with Bond's equation-Bond claimed that milling efficiency increases with mill diameter. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
A flow tagging technique based upon ionic fluorescence in strontium is investigated for applications to velocity measurements in gas flows. The method is based upon a combination of two laser based spectroscopic techniques, i.e. resonantly-enhanced ionisation and laser-induced ionic fluorescence. Strontium is first ionised and then planar laser-induced fluorescence is utilised to give 2D 'bright images' of the ionised region of the flow at a given time delay. The results show that this method can be used for velocity measurements. The velocities were measured in two types of air-acetylene flames - a slot burner and a circular burner yielding velocities of 5.1 +/- 0.1 m/s and 9.3 +/- 0.2 m/s, respectively. The feasibility of the method for the determination of velocities in faster flows than those investigated here is discussed.
Resumo:
We describe the progress towards developing a patient rated toxicity index that meets all of the patient-important attributes defined by the OMERACT Drug Safety Working Party, These attributes are frequency, severity. importance to patient, importance to the clinician, impact on economics, impact on activities, and integration of adverse effects with benefits. The Stanford Toxicity Index (STI) has been revised to collect all attributes with the exception of impact on activities. However, since the STI is a part of the Health Assessment Questionnaire (HAQ). impact on activities is collected by the HAQ. In particular, a new question asks patients to rate overall satisfaction, taking into consideration both benefits and adverse effects. The nest step in the development of this tool is to ensure that the STI meets the OMERACT filter of truth, discrimination, and feasibility. Although truth and feasibility have been confirmed by comparisons within the ARAMIS database, discrimination needs to be assessed in clinical trials.
Resumo:
This paper deals with non-Markovian behavior in atomic systems coupled to a structured reservoir of quantum electromagnetic field modes, with particular relevance to atoms interacting with the field in high-Q cavities or photonic band-gap materials. In cases such as the former, we show that the pseudomode theory for single-quantum reservoir excitations can be obtained by applying the Fano diagonalization method to a system in which the atomic transitions are coupled to a discrete set of (cavity) quasimodes, which in turn are coupled to a continuum set of (external) quasimodes with slowly varying coupling constants and continuum mode density. Each pseudomode can be identified with a discrete quasimode, which gives structure to the actual reservoir of true modes via the expressions for the equivalent atom-true mode coupling constants. The quasimode theory enables cases of multiple excitation of the reservoir to now be treated via Markovian master equations for the atom-discrete quasimode system. Applications of the theory to one, two, and many discrete quasimodes are made. For a simple photonic band-gap model, where the reservoir structure is associated with the true mode density rather than the coupling constants, the single quantum excitation case appears to be equivalent to a case with two discrete quasimodes.