189 resultados para Room impulse response
Resumo:
An experimental white cast iron with the unprecedented fracture tough ness of 40 MPa m(1/2) is currently being studied to determine the mechanisms of toughening. This paper reports the investigation of the role of strain-induced martensitic (SIM) transformation. The dendritic microconstituent in the toughened alloy consists primarily of retained austenite, with precipitated M(7)C(3) carbides and some martensite. Refrigeration experiments and differential scanning calorimetry (DSC) were used to demonstrate, firstly, that this retained austenite has an ''effective'' sub-ambient M(S) temperature and, secondly, that SIM transformation can occur at ambient temperatures. Comparison between room temperature and elevated temperature K-Ic tests showed that the observed SIM produces a transformation toughening response in the alloy, contributing to, but not fully accounting for, its high tough ness. SIM as a mechanism for transformation toughening has not previously been reported for white cast irons. Microhardness traverses on crack paths and X-ray diffraction (XRD) on fracture surfaces confirmed the interpretation of the K-Ic experiments. Further DSC and quantitative XRD showed that, as heat-treatment temperature is varied, there is a correlation between fracture toughness and the volume fraction of unstable retained austenite.
Resumo:
A line of FVB (H-2(q)) mice transgenic for the E6/E7 open reading frames of Human Papillomavirus type 16 driven from the alpha-A crystallin promoter expresses E7 mRNA in lens and skin epithelium. E7 protein is detectable in adult skin, coinciding with the development or inflammatory skin disease, which progresses to papillomata and squamous carcinomata in some mice. By examining the outcome of parenteral immunization with E7 protein, we sought to determine whether endogenous expression of E7 in skin had induced a preexisting immune outcome, i.e., specific immunity or tolerance, or whether the mice remain naive (''ignorant'') to E7. Our data show that the antibody response to defined E7 B-epitopes, the proliferative response to Th epitopes, and the delayed-type hypersensitivity (DTH) response to whole E7 did not differ between groups or young and old E6/E7 transgenic mice (likely having different degrees of lifetime exposure to E7 protein) or between E6/E7-transgenic and nontransgenic parental strain control mice. Although an E7-specific CTL response could not be induced in the H-2(q) background of these mice, incorporation of a D-b allele into the genome allowed comparison of D-b-restricted CTL responses in E6/E7 transgenic and nontransgenic mice. Experiments indicated that the E7-immunization-induced CTL response did not differ significantly between E6/E7 transgenic and nontransgenic mice. We interpret these results to indicate that in spite of expression of E7 protein in adult skin, E6/E7 transgenic mice remain immunologically naive (ignorant) of E7 epitopes presented by immunization. (C) 1997 Academic Press.
Resumo:
A glasshouse trial, in which maize (Zea mays L. cv. Pioneer 3270) was grown in 35 north-eastern Australian soils of low magnesium (Mg) status, was undertaken to study the response to applied Mg. Of the soils studied, 20 were strongly acidic (pH(1:5 soil:water) <5.4), and in these soils the response to Mg was studied in both the presence and absence of lime. Magnesium application significantly (P < 0.05) increased dry matter yield in 10 soils, all of which were strongly acidic. However, significant Mg responses were recorded in 6 soils in the presence of lime, indicating that, in many situations, liming strategies may need to include consideration of Mg nutrition. Critical soil test values for 90% relative yield were 0.21 cmol(+)/kg of exchangeable Mg or 7% Mg saturation, whilst the critical (90% yield) plant tissue Mg concentration (whole shoots) was 0.15%.
Resumo:
A free-piston driver that employs entropy-raising shock processes with diaphragm rupture has been constructed, which promises significant theoretical advantages over isentropic compression. Results from a range of conditions with helium and argon driver gases are reported. Significant performance gains were achieved in some test cases. Heat losses are shown to have a strong effect on driver processes. Measurements compare well with predictions from a quasi-one-dimensional numerical code.