114 resultados para Rectifying-k Channels
Resumo:
Service quality is assessed by customers along the dimensions of staff conduct, credibility, communication, and access to teller services. Credibility and staff conduct emerge as the highest loading first-order factors. This highlights the significance of rectifying mistakes while keeping customers informed, and employing branch staff that are responsive and civilized in their conduct. Discovery of a valid second-order factor, namely, overall customer service quality, underscores the importance of providing quality service across all its dimensions. For example, if the bank fails to rectify mistakes and keep customers informed but excels in all other dimensions, its overall customer service quality can still be rated poorly.
Resumo:
This study investigated the residues responsible for the reduced picrotoxin sensitivity of the alpha beta heteromeric glycine receptor relative to the alpha homomeric receptor. By analogy with structurally related receptors, the beta subunit M2 domain residues P278 and F282 were considered the most likely candidates for mediating this effect. These residues align with G254 and T258 of the alpha subunit. The T258A, T258C and T258F mutations dramatically reduced the picrotoxin sensitivity of the alpha homomeric receptor. Furthermore, the converse F282T mutation in the beta subunit increased the picrotoxin sensitivity of the alpha beta heteromeric receptor. The P278G mutation in the beta subunit did not affect the picrotoxin sensitivity of the alpha beta heteromer. Thus, a ring of five threonines at the M2 domain depth corresponding to alpha subunit T258 is specifically required for picrotoxin sensitivity. Mutations to alpha subunit T258 also profoundly influenced the apparent glycine affinity. A substituted cysteine accessibility analysis revealed that the T258C sidechain increases its pore exposure in the channel open state. This provides further evidence for an allosteric mechanism of picrotoxin inhibition, but renders it unlikely that picrotoxin las an allosterically acting 'competitive' antagonist) binds to this residue.
Resumo:
dEndocytosis is required for efficient mitogen-activated protein kinase (MAPK) activation by activated growth factor receptors. We examined if H-Ras and K-Ras proteins, which are distributed across different plasma membrane microdomains, have equal access to the endocytic compartment and whether this access is necessary for downstream signaling. Inhibition of endocytosis by dominant interfering dynamin-K44A blocked H-Ras but not K-Ras-mediated PC12 cell differentiation and selectively inhibited H-Ras- but not K-Ras-mediated Raf-1 activation in BHK cells. H-Ras- but not K-Ras-mediated Raf-1 activation was also selectively dependent on phosphoinositide 3-kinase activity. Stimulation of endocytosis and endocytic recycling by wildtype Rab5 potentiated H-Ras-mediated Raf-1 activation. In contrast, Rab5-Q79L, which stimulates endocytosis but not endocytic recycling, redistributed activated H-Ras from the plasma membrane into enlarged endosomes and inhibited H-Ras-mediated Raf-1 activation. Rab5-Q79L expression did not cause the accumulation of wild-type H-Ras in enlarged endosomes. Expression of wild-type Rab5 or Rab5-Q79L increased the specific activity of K-Ras-activated Raf-1 but did not result in any redistribution of K-Ras from the plasma membrane to endosomes. These results show that H-Ras but not K-Ras signaling though the Raf/MEK/MAPK cascade requires endocytosis and enclocytic recycling. The data also suggest a mechanism for returning Raf-1 to the cytosol after plasma membrane recruitment.
Resumo:
Free field and twisted parafermionic representations of twisted su(3)(k)((2)) current algebra are obtained. The corresponding twisted Sugawara energy-momentum tensor is given in terms of three (beta, gamma) pairs and two scalar fields and also in terms of twisted parafermionic currents and one scalar field. Two screening currents of the first kind are presented in terms of the free fields.
Resumo:
In this paper necessary and sufficient conditions are given for the metamorphosis of a lambda-fold K-3,K-3-design of order n into a lambda-fold 6-cycle system of order n, by retaining one 6-cycle subgraph from each copy of K-3,K-3, and then rearranging the set of all the remaining edges, three from each K-3,K-3, into further 6-cycles so that the result is a lambda-fold 6-cycle system.
Resumo:
Radical formation in ultem following gamma-radiolysis has been reassessed, and the G(R*) values at different temperatures have been determined by ESR spectroscopy. The radical assignment and radical reactivity have been re-examined by photobleaching and thermal annealing studies. Photobleachable radical anions were found to comprise approximate to40% of the total number of radicals formed on radiolysis at 77 K. Spectral subtraction methods, ESR spectral simulations, measurement of g-values and the hyperfine splitting constants were used to identify the other radical intermediates. The principal chain scission radicals are formed due to scission of the main-chain at (i) the ether linkage, (ii) the isopropylidene group and (iii) the imide ring in the main chain. The side chain methyl groups of the isopropylidine units also lose hydrogen to form methylene radicals. The five-line spectrum observed to decay in the temperature range 370-430 K, which has not been assigned previously, has been identified as being characteristic of a di-substituted benzyl radical. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The structural changes which occur on the gamma -radiolysis of poly(dimethyl siloxane) (PDMS) under vacuum at 303 K have been investigated using Si-29 and C-13 NMR. New structural units consistent with main chain scission and crosslinking through both H-linking and Y-linking reactions have been identified. The results obtained at various absorbed doses have been used to calculate the G-values for scission and crosslinking. G-values for scission of G(S) = 1.3 +/- 0.2, for H-linking of G(D-CH2-R) = 0.34 +/- 0.02 and for Y-Linking of G(Y) = 1.70 +/- 0.09 were obtained for radiolysis under vacuum at 303 K. Thus crosslinking predominates over scission for radiolysis of PDMS under these conditions, and, by contrast with previous studies, Y-links have been shown to be the predominant form of crosslinks. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
One hundred and twenty-five mineral grains from 45 visually pure K-bearing Mn oxide (hollandite group) samples collected from weathering profiles in the Mt Tabor region of central Queensland, Australia, were analysed by the Ar-40/Ar-39 laser probe technique. These K-Mn oxides precipitated mainly through a process of cavity filling (direct precipitation from weathering solution), with botryoidal texture formed by micrometric mineral bands. Well-defined and reproducible plateau ages have been obtained for most samples, ranging from 27.2 +/- 0.8 to 6.8 +/- 0.5 Ma (2 sigma). Statistical analysis of the geochronological results by mixture modelling suggests an episodic mineral precipitation history, with two major peaks at 20.2 +/- 0.22 Ma and 16.5 +/- 0.17 Ma. The geochronological results, when combined with information on paragenetic relationships and mineralogical textures obtained from petrographic, scanning electron microscopy, and electron microprobe investigations, indicate that warm and humid palaeoclimatic conditions favourable to intense chemical weathering prevailed in central Queensland from late Oligocene to middle Miocene, particularly in the early Miocene. These results, in conjunction with previous and ongoing investigations in NW and eastern Queensland, suggest that most of Queensland was dominated by humid climates during the Miocene. (C) 2002 Elsevier Science BN. All rights reserved.
Resumo:
A major limitation in any high-performance digital communication system is the linearity region of the transmitting amplifier. Nonlinearities typically lead to signal clipping. Efficient communication in such conditions requires maintaining a low peak-to-average power ratio (PAR) in the transmitted signal while achieving a high throughput of data. Excessive PAR leads either to frequent clipping or to inadequate resolution in the analog-to-digital or digital-to-analog converters. Currently proposed signaling schemes for future generation wireless communications suffer from a high PAR. This paper presents a new signaling scheme for channels with clipping which achieves a PAR as low as 3. For a given linear range in the transmitter's digital-to-analog converter, this scheme achieves a lower bit-error rate than existing multicarrier schemes, owing to increased separation between constellation points. We present the theoretical basis for this new scheme, approximations for the expected bit-error rate, and simulation results. (C) 2002 Elsevier Science (USA).
Resumo:
The presence of a basal nonselective cation permeability was mainly investigated in primary cultures of rat cardiac microvascular endothelial cells (CMEC) by applying both the patch-clamp technique and Fura-2 microfluorimetry. With low EGTA in the pipette solution, the resting membrane potential of CMEC was -21.2 +/- 1.1 mV, and a Ca2+-activated Cl- conductance was present. When the intracellular Ca2+ was buffered with high EGTA, the membrane potential decreased to 5.5 +/- 1.2 mV. In this condition, full or partial substitution of external Na+ by NMDG(+) proportionally reduced the inward component of the basal I-V relationship. This current was dependent on extracellular monovalent cations with a permeability sequence of K+ > Cs+ > Na+ > Li+ and was inhibited by Ca2+, La3+, Gd3+, and amiloride. The K+/Na+ permeability ratio, determined using the Goldman-Hodgkin-Katz equation, was 2.01. The outward component of the basal I-V relationship was reduced when intracellular K+ was replaced by NMDG(+), but was not sensitive to substitution by Cs+. Finally, microfluorimetric experiments indicated the existence of a basal Ca2+ entry pathway, inhibited by La3+ and Gd3+. The basal nonselective cation permeability in CMEC could be involved both in the control of myocardial ionic homeostasis, according to the model of the blood-heart barrier, and in the modulation of Ca2+ -dependent processes. (C) 2002 Elsevier Science (USA).
Resumo:
Purinergic stimulation of airway epithelial cells induces Cl- secretion and modulates Na+ absorption by an unknown mechanism. To gain insight into this mechanism, we used a perfused micro-Ussing chamber to assess transepithelial voltage (V-te) and amiloride-sensitive short-circuit current (Isc-Amil) in mouse trachea. Exposure to apical ATP or UTP (each 100 mumol/l) caused a large initial increase in lumen negative V-te and I-sc corresponding to a transient Cl- secretion, while basolateral application of ATP/UTP induced only a small secretory response. Luminal, but not basolateral, application of nucleotides was followed by a sustained and reversible inhibition of Isc-Amil that was independent of extracellular Ca2+ or activation of protein kinase C and was not induced by carbachol (100 mumol/l) or the Ca2+ ionophore ionomycin (1 mumol/l). Removal of extracellular Cl- or exposure to 200 muM DIDS reduced UTP-mediated inhibition of Isc-Amil Substantially. The phospholipase inhibitor U73122 (10 mumol/l) and pertussis toxin (PTX 200 ng/ml) both attenuated UTP-induced Cl- secretion and inhibition of Isc-Amil. Taken together, these data imply a contribution of Cl- conductance and PTX-sensitive G proteins to nucleotide-dependent inhibition of the amiloride-sensitive Na+ current in the mouse trachea.