95 resultados para Population-model
Resumo:
Objective: To investigate the population pharmacokinetics and the enteral bioavailability of phenytoin in neonates and infants with seizures. Methods: Data (5 mg kg-1 day-1) from 83 patients were obtained retrospectively from the medical records following written ethical approval. A one-compartment model was fitted to the data using NONMEM with FOCE-interaction. Between-subject variability (BSV) and interoccasion variability (IOV) were modelled exponentially together with a log transform-both-sides exponential residual unexplained variance (RUV) model. Covariates in nested models were screened for significance (X2, 1, 0.01). Model validity was determined by bootstrapping with replacement (N=500 samples) from the dataset. Results: The parameters of final pharmacokinetic were: Clearance (L h-1) = 0.826.(current Weight [kg]/70)0.75.(1+0.0692.(Postnatal age [days]-11)); Volume of distribution (L) = 74.2.(current Weight [kg]/70); Enteral bioavailability = 0.76; Absorption rate constant (h-1) = 0.167. BSV for clearance and volume of distribution were 74.2% and 65.6%, respectively. The IOV in clearance was 54.4%. The RUV was 51.1%. Final model parameters deviated from mean bootstrap estimates by
Resumo:
As an alternative to traditional evolutionary algorithms (EAs), population-based incremental learning (PBIL) maintains a probabilistic model of the best individual(s). Originally, PBIL was applied in binary search spaces. Recently, some work has been done to extend it to continuous spaces. In this paper, we review two such extensions of PBIL. An improved version of the PBIL based on Gaussian model is proposed that combines two main features: a new updating rule that takes into account all the individuals and their fitness values and a self-adaptive learning rate parameter. Furthermore, a new continuous PBIL employing a histogram probabilistic model is proposed. Some experiments results are presented that highlight the features of the new algorithms.