113 resultados para Plant-water relationships
Resumo:
Quantifying water losses in paddy fields assists estimation of water availability in rainfed lowland rice ecosystem. There is, however, no definite method for determining the water losses, and little information is available on water balance in different toposequence positions of a sloped rainfed lowland. Therefore, the aim of this work was to quantify percolation and the lateral water flow with special reference to the toposequential variation. Data used for the analysis was collected in Laos and northeast Thailand. Percolation and water tables were measured on a daily basis. The percolator is a steel cylindrical tube with a lid to prevent water loss from evapotranspiration. The water table meter is a short PVC tube for determination of perched water table and a long PVC tube for groundwater table, and the side is perforated with 5-mm diameter holes at 20-mm distance. Percolation rate was determined using linear regression analysis of cumulative percolation. Assuming that the total amount of evaporation and transpiration was equivalent to potential evapotranspiration, the lateral water flow was estimated using the water balance equation. Our results are in agreement with the previously reported findings, and the methodology of estimating water balance components appears reasonably acceptable. With regard to the toposequential variation, the higher position in the topoesquence, the greater potential of the water losses because of higher percolation and lateral flow rates.
Resumo:
Edible herbage production and water-use-efficiency of three tree legumes (Leucaena leucocephala cv. Tarramba, L. pallida x L. leucocephala (KX2) and Gliricidia sepium), cut at different times of the year (February, April, June and uncut) were compared in a semi-arid area of Timor Island, Indonesia. Cutting in the early and mid dry-season (April and June) resulted in higher total leaf production (P< 0.05) and water-use-efficiency (P< 0.05), than cutting late in the wet-season (February) or being left uncut. For the leucaena treatments removing leaf in the early to mid dry-season reduced transpiration, saving soil water for subsequent regrowth as evidenced by the higher relative water contents of leaves from these treatments. This cutting strategy can be applied to local farming conditions to increase the supply of feed for livestock during the dry season.