96 resultados para Overtures (Piano, 4 hands), Arranged.
Resumo:
Activation of macrophages with lipopolysaccharide (LPS) induces the rapid synthesis and secretion of proinflammatory cytokines, such as tumor necrosis factor (TNFalpha), for priming the immune response [1, 2]. TNFalpha plays a key role in inflammatory disease [3]; yet, little is known of the intracellular trafficking events leading to its secretion. In order to identify molecules involved in this secretory pathway, we asked whether any of the known trafficking proteins are regulated by LPS. We found that the levels of SNARE proteins were rapidly and significantly up- or downregulated during macrophage activation. A subset of t-SNAREs (Syntaxin 4/SNAP23/Munc18c) known to control regulated exocytosis in other cell types [4, 5] was substantially increased by LPS in a temporal pattern coinciding with peak TNFalpha secretion. Syntaxin 4 formed a complex with Munc18c at the cell surface of macrophages. Functional studies involving the introduction of Syntaxin 4 cDNA or peptides into macrophages implicate this t-SNARE in a rate-limiting step of TNFalpha secretion and in membrane ruffling during macrophage activation. We conclude that in macrophages, SNAREs are regulated in order to accommodate the rapid onset of cytokine secretion and for membrane traffic associated with the phenotypic changes of immune activation. This represents a novel regulatory role for SNAREs in regulated secretion and in macrophage-mediated host defense.
Resumo:
The crystal structures of a pair of cis and trans isomers of the macrocyclic chloropentaamine title complex, as their tetrachlorozincate(II) salts, [CoCl(C11H27N5)][ZnCl4], are reported. The two distinct isomeric forms lead to significant variations in the Co-N bond lengths and, furthermore, hydrogen bonding between the complex ions is influenced by the folded (cis) or planar (trans) conformations of the coordinated ligand.
Resumo:
Di-2-pyridyl ketone isonicotinoyl hydrazone (HPKIH) and a range of its analogues comprise a series of monobasic acids that are capable of binding iron (Fe) as tridentate (N,N,O) ligands. Recently, we have shown that these chelators are highly cytotoxic, but show selective activity against cancer cells. Particularly interesting was the fact that cytotoxicity of the HPKIH analogues is maintained even after complexation with Fe. To understand the potent anti-tumor activity of these compounds, we have fully characterized their chemical properties. This included examination of the solution chemistry and X-ray crystal structures of both the ligands and Fe complexes from this class and the ability of these complexes to mediate redox reactions. Potentiometric titrations demonstrated that all chelators are present predominantly in their charge-neutral form at physiological pH (7.4), allowing access across biological membranes. Keto-enol tautomerism of the ligands was identified, with the tautomers exhibiting distinctly different protonation constants. Interestingly, the chelators form low-spin (diamagnetic) divalent Fe complexes in solution. The chelators form distorted octahedral complexes with Fe-II, with two tridentate ligands arranged in a meridional fashion. Electrochemistry of the Fe complexes in both aqueous and non-aqueous solutions revealed that the complexes are oxidized to their ferric form at relatively high potentials, but this oxidation is coupled to a rapid reaction with water to form a hydrated (carbinolamine) derivative, leading to irreversible electrochemistry. The Fe complexes of the HPKIH analogues caused marked DNA degradation in the presence of hydrogen peroxide. This observation confirms that Fe complexes from the HPKIH series mediate Fenton chemistry and do not repel DNA. Collectively, studies on the solution chemistry and structure of these HPKIH analogues indicate that they can bind cellular Fe and enhance its redox activity, resulting in oxidative damage to vital biomolecules.
Resumo:
The major trans (1) and minor cis (2) isomers of 1,4,8,11-tetraazacyclotetradecane-6,13-dicarboxylate have been characterized as the complexes [Co(1)](ClO4) and [Co(H-2)(OH2)]Cl(ClO4).H2O. The former crystallized in the C-2/c space group and the latter in the P2(1)/c space group, with cell parameters a 16.258(7), b 9.050(3), c 15.413(6) Angstrom, beta133.29(3)degrees, and a 9.694(4), b 16.135(1), c 12.973(5) Angstrom, beta 93.00(2)degrees, respectively. Their characterization completes identification of the respective trans and cis isomers for the series of C-pendant macrocycles also including 1,4,8,11-tetraazacyclotetradecane-6-amine-13-carboxylate ((3), (4)) and 1,4,8,11-tetraazacyclotetradecane-6,13-diamine ((5), (6)). The complexes show limited distortion from octahedral geometry with the strain in the presence of the coordinated C-pendant carboxylate significantly reduced compared with that for the C-pendant amine in analogues, a consequence mainly of six-membered as opposed to five-membered chelate rings involving the pendant donor. A comparison of the physical properties for the trans isomers of the octahedral complexes of (1), (3), and (5), which reflect progressively increasing strain, is presented.
Resumo:
Regiospecific bromination of 2,4,4-trimethyl-cyclohex-2-enone was achieved and the X-ray crystal structure of 6-bromo-2,4,4-trimethyl-cyclohex-2-enone is presented.