95 resultados para Optical-absorption
Resumo:
Free-space optical interconnects (FSOIs), made up of dense arrays of vertical-cavity surface-emitting lasers, photodetectors and microlenses can be used for implementing high-speed and high-density communication links, and hence replace the inferior electrical interconnects. A major concern in the design of FSOIs is minimization of the optical channel cross talk arising from laser beam diffraction. In this article we introduce modifications to the mode expansion method of Tanaka et al. [IEEE Trans. Microwave Theory Tech. MTT-20, 749 (1972)] to make it an efficient tool for modelling and design of FSOIs in the presence of diffraction. We demonstrate that our modified mode expansion method has accuracy similar to the exact solution of the Huygens-Kirchhoff diffraction integral in cases of both weak and strong beam clipping, and that it is much more accurate than the existing approximations. The strength of the method is twofold: first, it is applicable in the region of pronounced diffraction (strong beam clipping) where all other approximations fail and, second, unlike the exact-solution method, it can be efficiently used for modelling diffraction on multiple apertures. These features make the mode expansion method useful for design and optimization of free-space architectures containing multiple optical elements inclusive of optical interconnects and optical clock distribution systems. (C) 2003 Optical Society of America.
Resumo:
Based on the hypothesis that limited receptor solubility of lipophilic compounds may result in lower observed permeability parameters, the aim of this study was to determine the in vitro human epidermal permeability coefficients and membrane retention of a series of aliphatic alcohols (C1-C10, log p -0.72 to 4.06) using two different receptor solutions (water and 4% bovine serum albumin in phosphate-buffered saline). Aqueous solutions of radiolabeled alcohols were dosed into the stratum corneum side of membranes mounted in side-by-side glass diffusion cells. Appearance of alcohol in the receptor compartment filled with either of the two solutions was monitored over a 7 h period when both stratum corneum (assessed by tape stripping) and the remaining epidermis levels of radioactivity were determined. In a separate study the degree of binding of alcohols to 4% bovine serum albumin was determined. The data showed increased receptor phase solubility in the bovine serum albumin solution and higher permeability coefficients for the more lipophilic alcohols in the series. No changes were seen in the partitioning of the alcohols from the vehicle into either the stratum corneum or tape-stripped epidermis with the two receptor phases; however, a decrease in the amount of the more lipophilic alcohols partitioning into the water receptor phase from the tape-stripped epidermis was observed. We conclude that bovine serum albumin receptor phase allows better estimation of real permeability parameters for lipophilic compounds due to its increased solubility capacity and we question whether permeability parameters for lipophilic solutes from older data sets based on aqueous receptor phases are completely reliable.
Resumo:
Ultrasonic absorption in polymer gel dosimeters was investigated. An ultrasonic interferometer was used to study the frequency (f) dependence of the absorption coefficient (alpha) in a polyacrylamide gel dosimeter (PAG) in the frequency range 5-20 MHz. The frequency dependence of ultrasonic absorption deviated from that of an ideal viscous fluid. The presence of relaxation mechanisms was evidenced by the frequency dependence of alpha/f(2) and the dispersion in ultrasonic velocity. It was concluded that absorption in polymer gel dosimeters is due to a number of relaxation processes which may include polymer-solvent interactions as well as relaxation due to motion of polymer side groups. The dependence of ultrasonic absorption on absorbed dose and formulation was also investigated in polymer gel dosimeters as a function of pH and chemical composition. Changes in dosimeter pH and chemical composition resulted in a variation in ultrasonic dose response curves. The observed dependence on pH was considered to be due to pH induced modifications in the radiation yield while changes in chemical composition resulted in differences in polymerisation kinetics. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Results of experiments recently performed are reported, in which two optical parametric amplifiers were set up to generate two independently quadrature squeezed continuous wave laser beams. The transformation of quadrature squeezed states into polarization squeezed states and into states with spatial quantum correlations is demonstrated. By utilizing two squeezed laser beams, a polarization squeezed state exhibiting three simultaneously squeezed Stokes operator variances was generated. Continuous variable polarization entanglement was generated and the Einstein-Podolsky-Rosen paradox was observed. A pair of Stokes operators satisfied both the inseparability criterion and the conditional variance criterion. Values of 0.49 and 0.77, respectively, were observed, with entanglement requiring values below unity. The inseparability measure of the observed quadrature entanglement was 0.44. This value is sufficient for a demonstration of quantum teleportation, which is the next experimental goal of the authors.
Resumo:
The absorption of fluid by unsaturated, rigid porous materials may be characterized by the sorptivity. This is a simple parameter to determine and is increasingly being used as a measure of a material's resistance to exposure to fluids (especially moisture and reactive solutes) in aggressive environments. The complete isothermal absorption process is described by a nonlinear diffusion equation, with the hydraulic diffusivity being a strongly nonlinear function of the degree of saturation of the material. This diffusivity can be estimated from the sorptivity test. In a typical test the cumulative absorption is proportional to the square root of time. However, a number of researchers have observed deviation from this behaviour when the infiltrating fluid is water and there is some potential for chemo-mechanical interaction with the material. In that case the current interpretation of the test and estimation of the hydraulic diffusivity is no longer appropriate. Kuntz and Lavallee (2001) discuss the anomalous behaviour and propose a non-Darcian model as a more appropriate physical description. We present an alternative Darcian explanation and theory that retrieves the earlier advantages of the simple sorptivity test in providing parametric information about the material's hydraulic properties and allowing simple predictive formulae for the wetting profile to be generated.