239 resultados para Molecular gas
Resumo:
Despite its toxicity, sulfite plays a key role in oxidative sulfur metabolism and there are even some microorganisms which can use it as sole electron source. Sulfite is the main intermediate in the oxidation of sulfur compounds to sulfate, the major product of most dissimilatory sulfur-oxidizing prokaryotes. Two pathways of sulfite oxidation are known: (1) direct oxidation to sulfate catalyzed by a sulfite: acceptor oxidoreductase, which is thought to be a molybdenum-containing enzyme; (2) indirect oxidation under the involvement of the enzymes adenylylsulfate (APS) reductase and ATP sulfurylase and/or adenylylsulfate phosphate adenylyltransferase with APS as an intermediate. The latter pathway allows substrate phosphorylation and occurs in the bacterial cytoplasm. Direct oxidation appears to have a wider distribution; however, a redundancy of pathways has been described for diverse photo- or chemotrophic, sulfite-oxidizing prokaryotes. In many pro- and also eukaryotes sulfite is formed as a degradative product from molecules containing sulfur as a heteroatom. In these organisms detoxification of sulfite is generally achieved by direct oxidation to sulfate. (C) 2001 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.
Resumo:
A method involving bubbling of air through a fibrous filter immersed in water has recently been investigated (Agranovski et al. [1]). Experimental results showed that the removal efficiency for ultra-fine aerosols by such filters was greatly increased compared to dry filters. Nuclear Magnetic Resonance (NMR) imaging was used to examine the wet filter and to determine the nature of the gas flow inside the filter (Agranovski et al. [2]). It was found that tortuous preferential pathways (or flow tubes) develop within the filter through which the air flows and the distribution of air and water inside the porous medium has been investigated. The aim of this paper is to investigate the geometry of the pathways and to make estimates of the flow velocities and particle removal efficiency in such pathways. A mathematical model of the flow of air along the preferred pathways has been developed and verified experimentally. Even for the highest realistic gas velocity the flow field was essentially laminar (Re approximate to 250). We solved Laplace's equation for stream function to map trajectories of particles and gas molecules to investigate the possibility of their removal from the carrier.
Resumo:
The majority of severe epileptic encephalopathies of early childhood are symptomatic where a clear etiology is apparent. There is a small subgroup, however, where no etiology is found on imaging and metabolic studies, and genetic factors are important. Myoclonic-astatic epilepsy (MAE) and severe myoclonic epilepsy in infancy (SMEI), also known as Dravet syndrome, are epileptic encephalopathies where multiple seizure types begin in the first few years of life associated with developmental slowing. Clinical and molecular genetic studies of the families of probands with MAE and SMEI suggest a genetic basis. MAE was originally identified as part of the genetic epilepsy syndrome generalized epilepsy with febrile seizures plus (GEFS(+)). Recent clinical genetic studies suggest that SMEI forms the most severe end of the spectrum of the GEFS(+). GEF(+) has now been associated with molecular defects in three sodium channel subunit genes and a GABA subunit gene. Molecular defects of these genes have been identified in patients with MAE and SMEI. Interestingly, the molecular defects in MAE have been found in the setting of large GEFS(+) pedigrees, whereas, more severe truncation mutations arising de novo have been identified in patients with SMEI. It is likely that future molecular studies will shed light on the interaction of a number of genes, possibly related to the same or different ion channels, which result in a severe phenotype such as MAE and SMEI. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Metal oxide pillared clay (PILC) possesses several interesting properties, such as large surface area, high pore volume and tunable pore size (from micropore to mesopore), high thermal stability, strong surface acidity and catalytic active substrates/metal oxide pillars. These unique characteristics make PILC an attractive material in catalytic reactions. It can be made either as catalyst support or directly used as catalyst. This paper is a continuous work from Kloprogge's review (J.T. Kloprogge, J. Porous Mater. 5, 5 1998) on the synthesis and properties of smectites and related PILCs and will focus on the diverse applications of clay pillared with different types of metal oxides in the heterogeneous catalysis area and adsorption area. The relation between the performance of the PILC and its physico-chemical features will be addressed.
Resumo:
Since dilute Bose gas condensates were first experimentally produced, the Gross-Pitaevskii equation has been successfully used as a descriptive tool. As a mean-field equation, it cannot by definition predict anything about the many-body quantum statistics of condensate. We show here that there are a class of dynamical systems where it cannot even make successful predictions about the mean-field behavior, starting with the process of evaporative cooling by which condensates are formed. Among others are parametric processes, such as photoassociation and dissociation of atomic and molecular condensates.
Resumo:
The European rabbit (Oryctolagus cuniculus) uses the secretion of the chin gland in the maintenance of social status. Previous work has concentrated on secretion collected directly from the animal. In this study, the analysis was conducted by collecting scent marks made by free-ranging animals. Scent marks were found to be concentrated at the center of the area controlled by a social group, and at the boundaries between two adjacent social groups. Only the mark from dominant animals could be identified. Marks were also collected from the skin of rabbits, where they had been placed by the dominant individual. The mark found on the head of a subordinate animal may, in the future, be used to identify the dominant animal of the social group, who placed the mark.
Resumo:
The salticid spider Cosmophasis bitaeniata preys on the larvae of the green tree ant Oecophylla smaragdina. Gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) reveal that the cuticle of C. bitaeniata mimics the mono- and dimethylalkanes of the cuticle of its prey. Recognition bioassays with extracts of the cuticular hydrocarbons of ants and spiders revealed that foraging major workers did not respond aggressively to the extracts of the spiders or conspecific nestmates, but reacted aggressively to conspecific nonnestmates. Typically, the ants either failed to react (as with control treatments with no extracts) or they reacted nonaggressively as with conspecific nestmates. These data indicate that the qualitative chemical mimicry of ants by C. bitaeniata allows the spiders to avoid detection by major workers of O. smaragdina.
Resumo:
The synthetic organic compound λ(BETS)2FeCl4 undergoes successive transitions from an antiferromagnetic insulator to a metal and then to a superconductor as a magnetic field is increased. We use a Hubbard-Kondo model to clarify the role of the Fe3+ magnetic ions in these phase transition. In the high-field regime, the magnetic field acting on the electron spins is compensated by the exchange field He due to the magnetic ions. This suggests that the field-induced superconducting state is the same as the zero-field superconducting state which occurs under pressure or when the Fe3+ ions are replaced by non-magnetic Ga3+ ions. We show how Hc can be extracted from the observed splitting of the Shybnikov-de Haas frequencies. Furthermore, we use this method of extracting He to predict the field range for field-induced superconductivity in other materials. We also show that at high fields the spin fluctuations of the localized spins are not important.
Resumo:
The volatile components of the chin gland secretion of the wild European rabbit, Oryctolagus cuniculus (L.), were investigated with the use of gas chromatography. Studies of the chemical nature of this secretion by previous workers demonstrated that it was important in the maintenance of social structure in this species. This study identified 34 different volatile components that consist primarily of aromatic and aliphatic hydrocarbons. Especially common are a series of alkyl-substituted benzene derivatives that provide most of the compound diversity in the secretion. Samples of chin gland secretion collected from animals at three different geographical locations, separated by more than 100 km, showed significant differences in composition. This work suggests that variation among populations needs to be considered when undertaking semiochemical research. Alternate nonparametric methods are also used for the analysis of chromatographic data.
Resumo:
Multipartite nucleic acid-containing virus-like particles, known as polydnaviruses, are special structures produced by female parasitoid wasps to deliver wasp components into the body of their host at oviposition. The particles confer protection for the developing parasitoid by passive and active means. Although several genes expressed from the circular DNA of these particles have been identified from various host-parasitoid systems, there is not much known about the structural proteins of these particles. Here we report on two genes encoding Cotesia rubecula particle proteins with similarities to molecular chaperones, calreticulin and heat-shock protein 70.
Resumo:
Animal venom components are of considerable interest to researchers across a wide variety of disciplines, including molecular biology, biochemistry, medicine, and evolutionary genetics. The three-finger family of snake venom peptides is a particularly interesting and biochemically complex group of venom peptides, because they are encoded by a large multigene family and display a diverse array of functional activities. In addition, understanding how this complex and highly varied multigene family evolved is an interesting question to researchers investigating the biochemical diversity of these peptides and their impact on human health. Therefore, the purpose of our study was to investigate the long-term evolutionary patterns exhibited by these snake venom toxins to understand the mechanisms by which they diversified into a large, biochemically diverse, multigene family. Our results show a much greater diversity of family members than was previously known, including a number of subfamilies that did not fall within any previously identified groups with characterized activities. In addition, we found that the long-term evolutionary processes that gave rise to the diversity of three-finger toxins are consistent with the birth-and-death model of multigene family evolution. It is anticipated that this three-finger toxin toolkit will prove to be useful in providing a clearer picture of the diversity of investigational ligands or potential therapeutics available within this important family.
Resumo:
Monosaccharides provide an excellent platform to tailor molecular diversity by appending desired substituents at selected positions around the sugar scaffold. The presence of five functionalized and stereo-controlled centres on the sugar scaffolds gives the chemist plenty of scope to custom design molecules to a pharmacophore model. This review focuses on the peptidomimetic developments in this area, as well as the concept of tailoring structural and functional diversity in a library using carbohydrate scaffolds and how this can lead to increased hit rates and rapid identification of leads, which has promising prospects for drug development.
Resumo:
Canine parasitic zoonoses pose a continuing public health problem, especially in developing countries and communities that are socioeconomically disadvantaged. Our study combined the use of conventional and molecular epidemic, logical tools to determine the role of dogs in transmission of gastrointestinal (GI) parasites such as hookworms, Giardia and Ascaris in a parasite endemic teagrowing community in northeast India. A highly sensitive and specific molecular tool was developed to detect and differentiate the zoonotic species of canine hookworm eggs directly from faeces. This allowed epidemiological screening of canine hookworm species in this community to be conducted with ease and accuracy. The zoonotic potential of canine Giardia was also investigated by characterising Giardia duodenalis recovered from humans and dogs living in the same locality and households at three different loci. Phylogenetic and epidemiological analysis provided compelling evidence to support the zoonotic transmission of canine Giardia. Molecular tools were also used to identify the species of Ascaris egg present in over 30% of dog faecal samples. The results demonstrated the role of dogs as a significant disseminator and environmental contaminator of Ascaris lumbricoides in communities where promiscuous defecation practices exist. Our study demonstrated the usefulness of combining conventional and molecular parasitological and epidemiological tools to help solve unresolved relationships with regards to parasitic zoonoses.
Resumo:
The circumscription of Oxylobium and related genera has been problematic for nearly 200 years. Traditional definitions of genera in the group have relied on morphological features of the leaves, flower, and fruit that overlap extensively between genera. Therefore sequences of cpDNA (trnL-F intron and spacer) and nrDNA (ITS) were used to estimate the phylogeny of the group in an attempt to redefine the genera as monophyletic groups. Oxylobium sens. str. was found to be a well supported clade in both data sets, with the inclusion of Mirbelia oxylobioides. No other genus in the group was supported by these data, except Gastrolobium sens. lat. Some species groups within Chorizema, Mirbelia, and Podolobium were supported but relationships among these, Oxylobium and Gastrolobium differed significantly between the chloroplast and nuclear data sets. No group supported by the molecular data had a morphological synapomorphy, not even Oxylobium or Gastrolobium. Therefore it may be necessary to adopt a much broader generic concept in this group than has been done previously. Incongruence between the two molecular data sets, and very short internal basal branches in both, suggest a rapid early radiation in this group, possibly combined with hybridization and lineage sorting.