99 resultados para Model-driven Web engineering
Resumo:
An equivalent unit cell waveguide approach (WGA) is described to obtain reflection coefficient phase curves for designing a microstrip patch reflectarray supported by a ground plane with periodic apertures or slots. Based on the presented theory, a computer algorithm for determining the reflection coefficient of a plane wave normally incident on a multi-layer structure of patches and apertures is developed. The validity of the developed algorithm is verified by comparing the obtained results with those published in the literature and the ones generated by Agilent High Frequency Structure Simulator (HFSS). A good agreement in all the presented examples is obtained, proving that the developed theory and computer algorithm can be an effective tool for designing multi-layer microstrip reflectarrays with a periodically perforated ground plane. (C) 2003 Wiley Periodicals, Inc.
Resumo:
This paper deals with an n-fold Weibull competing risk model. A characterisation of the WPP plot is given along with estimation of model parameters when modelling a given data set. These are illustrated through two examples. A study of the different possible shapes for the density and failure rate functions is also presented. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Steel fiber reinforced concrete (SFRC) is widely applied in the construction industry. Numerical elastoplastic analysis of the macroscopic behavior is complex. This typically involves a piecewise linear failure curve including corner singularities. This paper presents a single smooth biaxial failure curve for SFRC based on a semianalytical approximation. Convexity of the proposed model is guaranteed so that numerical problems are avoided. The model has sufficient flexibility to closely match experimental results. The failure curve is also suitable for modeling plain concrete under biaxial loading. Since this model is capable of simulating the failure states in all stress regimes with a single envelope, the elastoplastic formulation is very concise and simple. The finite element implementation is developed to demonstrate the conciseness and the effectiveness of the model. The computed results display good agreement with published experimental data.
Resumo:
A stickiness testing device based on the probe tack test has been designed and tested. It was used to perform in situ characterization of drying hemispherical drops with an initial radius 3.5 mm. Tests were carried out in two drying temperatures, 63 and 95 degreesC. Moisture and temperature histories of the drying drops of fructose, honey, sucrose, maltodextrin and sucrose-maltodextrin mixtures were determined. The rates of moisture evaporation of the fructose solution was the fastest while those of the maltodextrin solution was the lowest. A profile reversal was observed when the temperature profiles of these materials were compared. Different modes of failure were observed during the stickiness tests. Pure fructose and honey solutions remained completely sticky and failed cohesively until the end of drying. Pure sucrose solution remained sticky and failed cohesively until complete crystallization occurred. The surface of the maltodextrin drops formed a skin shortly after the start of drying. It exhibited adhesive failure and reached a state of non-adhesion. Addition of maltodextrin significantly altered the stickiness of sucrose solution. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
This paper presents a new model based on thermodynamic and molecular interaction between molecules to describe the vapour-liquid phase equilibria and surface tension of pure component. The model assumes that the bulk fluid can be characterised as set of parallel layers. Because of this molecular structure, we coin the model as the molecular layer structure theory (MLST). Each layer has two energetic components. One is the interaction energy of one molecule of that layer with all surrounding layers. The other component is the intra-layer Helmholtz free energy, which accounts for the internal energy and the entropy of that layer. The equilibrium between two separating phases is derived from the minimum of the grand potential, and the surface tension is calculated as the excess of the Helmholtz energy of the system. We test this model with a number of components, argon, krypton, ethane, n-butane, iso-butane, ethylene and sulphur hexafluoride, and the results are very satisfactory. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The use of a fitted parameter watershed model to address water quantity and quality management issues requires that it be calibrated under a wide range of hydrologic conditions. However, rarely does model calibration result in a unique parameter set. Parameter nonuniqueness can lead to predictive nonuniqueness. The extent of model predictive uncertainty should be investigated if management decisions are to be based on model projections. Using models built for four neighboring watersheds in the Neuse River Basin of North Carolina, the application of the automated parameter optimization software PEST in conjunction with the Hydrologic Simulation Program Fortran (HSPF) is demonstrated. Parameter nonuniqueness is illustrated, and a method is presented for calculating many different sets of parameters, all of which acceptably calibrate a watershed model. A regularization methodology is discussed in which models for similar watersheds can be calibrated simultaneously. Using this method, parameter differences between watershed models can be minimized while maintaining fit between model outputs and field observations. In recognition of the fact that parameter nonuniqueness and predictive uncertainty are inherent to the modeling process, PEST's nonlinear predictive analysis functionality is then used to explore the extent of model predictive uncertainty.
Resumo:
This paper describes the modification of a two-dimensional finite element long wave hydrodynamic model in order to predict the net current and water levels attributable to the influences of waves. Tests examine the effects of the application of wave induced forces, including comparisons to a physical experiment. An example of a real river system is presented with comparisons to measured data, which demonstrate the importance of simulating the combined effects of tides and waves upon hydrodynamic behavior. (C) 2002 Elsevier Science Ltd. All rights reserved.