132 resultados para MACROSCOPIC QUANTUM PHENOMENA IN MAGNETIC SYSTEMS
Resumo:
Pervasive systems need to be context aware and need to adapt to context changes, including network disconnections and changes in network Quality of Service (QoS). Vertical handover (handover between heterogeneous networks) is one of possible adaptation methods. It allows users to roam freely between heterogeneous networks while maintaining continuity of their applications. This paper proposes a vertical handover approach suitable for multimedia applications in pervasive systems. It describes the adaptability decision making process which uses vertical handovers to support users mobility and provision of QoS suitable for users’ applications. The process evaluates context information regarding user devices, User location, network environment, and user perceived QoS of applications.
Resumo:
A quantum Markovian master equation is derived to describe the current noise in resonant tunneling devices. This equation includes both incoherent and coherent quantum tunneling processes. We show how to obtain the population master equation by adiabatic elimination of quantum coherences in the presence of elastic scattering. We calculate the noise spectrum for a double well device and predict subshot noise statistics for strong tunneling between the wells. The method is an alternative to Green's function methods and population master equations for very small coherently coupled quantum dots.
Resumo:
This paper deals with non-Markovian behavior in atomic systems coupled to a structured reservoir of quantum electromagnetic field modes, with particular relevance to atoms interacting with the field in high-Q cavities or photonic band-gap materials. In cases such as the former, we show that the pseudomode theory for single-quantum reservoir excitations can be obtained by applying the Fano diagonalization method to a system in which the atomic transitions are coupled to a discrete set of (cavity) quasimodes, which in turn are coupled to a continuum set of (external) quasimodes with slowly varying coupling constants and continuum mode density. Each pseudomode can be identified with a discrete quasimode, which gives structure to the actual reservoir of true modes via the expressions for the equivalent atom-true mode coupling constants. The quasimode theory enables cases of multiple excitation of the reservoir to now be treated via Markovian master equations for the atom-discrete quasimode system. Applications of the theory to one, two, and many discrete quasimodes are made. For a simple photonic band-gap model, where the reservoir structure is associated with the true mode density rather than the coupling constants, the single quantum excitation case appears to be equivalent to a case with two discrete quasimodes.
Resumo:
We analyze the critical quantum fluctuations in a coherently driven planar optical parametric oscillator. We show that the presence of transverse modes combined with quantum fluctuations changes the behavior of the quantum image critical point. This zero-temperature nonequilibrium quantum system has the same universality class as a finite-temperature magnetic Lifshitz transition.
Resumo:
In quantum measurement theory it is necessary to show how a, quantum source conditions a classical stochastic record of measured results. We discuss mesoscopic conductance using quantum stochastic calculus to elucidate the quantum nature of the measurement taking place in these systems. To illustrate the method we derive the current fluctuations in a two terminal mesoscopic circuit with two tunnel barriers containing a single quasi bound state on the well. The method enables us to focus on either the incoming/ outgoing Fermi fields in the leads, or on the irreversible dynamics of the well state itself. We show an equivalence between the approach of Buttiker and the Fermi quantum stochastic calculus for mesoscopic systems.
Resumo:
We identify a test of quantum mechanics versus macroscopic local realism in the form of stochastic electrodynamics. The test uses the steady-state triple quadrature correlations of a parametric oscillator below threshold.
Resumo:
Classical dynamics is formulated as a Hamiltonian flow in phase space, while quantum mechanics is formulated as unitary dynamics in Hilbert space. These different formulations have made it difficult to directly compare quantum and classical nonlinear dynamics. Previous solutions have focused on computing quantities associated with a statistical ensemble such as variance or entropy. However a more diner comparison would compare classical predictions to the quantum predictions for continuous simultaneous measurement of position and momentum of a single system, in this paper we give a theory of such measurement and show that chaotic behavior in classical systems fan be reproduced by continuously measured quantum systems.
Resumo:
We investigate the theory of quantum fluctuations in non-equilibrium systems having large critical fluctuations. This allows us to treat the limits imposed by nonlinearities to quantum squeezing and noise reduction, and also to envisage future tests of quantum theory in regions of macroscopic quantum fluctuations. A long-term objective of this research is to identify suitable physical systems in which macroscopic 'Schrodinger cat'-like behaviour may be observed. We investigate two systems in particular of much current experimental interest, namely the degenerate parametric oscillator near threshold, and the evaporatively cooled (BEC). We compare the results obtained in the positive-P representation, as a fully quantum mechanical calculation, with the truncated Wigner phase space equation, also known as semi-classical theory. We show when these results agree and differ in calculations taken beyond the linearized approximation. In the region where the largest quantum fluctuations and Schrodinger cat-like behaviour might be expected, we find that the quantum predictions correspond very closely to the semi-classical theory. Nature abhors observing a Schrodinger car.