107 resultados para Local optimization algorithms
Resumo:
We present a novel maximum-likelihood-based algorithm for estimating the distribution of alignment scores from the scores of unrelated sequences in a database search. Using a new method for measuring the accuracy of p-values, we show that our maximum-likelihood-based algorithm is more accurate than existing regression-based and lookup table methods. We explore a more sophisticated way of modeling and estimating the score distributions (using a two-component mixture model and expectation maximization), but conclude that this does not improve significantly over simply ignoring scores with small E-values during estimation. Finally, we measure the classification accuracy of p-values estimated in different ways and observe that inaccurate p-values can, somewhat paradoxically, lead to higher classification accuracy. We explain this paradox and argue that statistical accuracy, not classification accuracy, should be the primary criterion in comparisons of similarity search methods that return p-values that adjust for target sequence length.
Resumo:
What interactions are sufficient to simulate arbitrary quantum dynamics in a composite quantum system? We provide an efficient algorithm to simulate any desired two-body Hamiltonian evolution using any fixed two-body entangling n-qubit Hamiltonian and local unitary operations. It follows that universal quantum computation can be performed using any entangling interaction and local unitary operations.
Resumo:
Purpose: The purpose of this study was to examine the influence of three different high-intensity interval training (HIT) regimens on endurance performance in highly trained endurance athletes. Methods: Before, and after 2 and 4 wk of training, 38 cyclists and triathletes (mean +/- SD; age = 25 +/- 6 yr; mass = 75 +/- 7 kg; (V)over dot O-2peak = 64.5 +/- 5.2 mL.kg(-1).min(-1)) performed: 1) a progressive cycle test to measure peak oxygen consumption ((V)over dotO(2peak)) and peak aerobic power output (PPO), 2) a time to exhaustion test (T-max) at their (V)over dotO(2peak) power output (P-max), as well as 3) a 40-kin time-trial (TT40). Subjects were matched and assigned to one of four training groups (G(1), N = 8, 8 X 60% T-max P-max, 1:2 work:recovery ratio; G(2), N = 9, 8 X 60% T-max at P-max, recovery at 65% HRmax; G(3), N = 10, 12 X 30 s at 175% PPO, 4.5-min recovery; G(CON), N = 11). In addition to G(1) G(2), and G(3) performing HIT twice per week, all athletes maintained their regular low-intensity training throughout the experimental period. Results: All HIT groups improved TT40 performance (+4.4 to +5.8%) and PPO (+3.0 to +6.2%) significantly more than G(CON) (-0.9 to + 1.1 %; P < 0.05). Furthermore, G(1) (+5.4%) and G(2) (+8.1%) improved their (V)over dot O-2peak significantly more than G(CON) (+ 1.0%; P < 0.05). Conclusion: The present study has shown that when HIT incorporates P-max as the interval intensity and 60% of T-max as the interval duration, already highly trained cyclists can significantly improve their 40-km time trial performance. Moreover, the present data confirm prior research, in that repeated supramaximal HIT can significantly improve 40-km time trial performance.
Resumo:
The synthesis and characterization of high-quality mesoporous silicoaluminophosphates (SAPOs) with a hexagonally arranged pore structure and a good thermal stability are described. The influence of some important synthesis parameters including temperature, time, and Si content in the synthesis gel was examined. The local environments of Al, P, and Si were investigated using MAS NMR spectroscopy. The acidity of the mesoporous SAPOs was studied and compared with those of aluminosilicate MCM-41 and SAPO-5. Results show that both the synthesis temperature and time have a significant impact on the formation of mesoporous SAPOs, whereas the presence of Si in the synthesis gel has a direct influence on the structure type and the quality of the resulting mesoporous SAPO materials. High-quality mesoporous SAPOs can be synthesized from the synthesis gels with Si/Al ratio smaller than 0.5 in the presence of cationic surfactants in a weakly basic aqueous solution. The mesoporous SAPO materials show interesting acidity properties, possessing both strong and mild sites. (C) 2002 Elsevier Science Inc. All rights reserved.
Resumo:
Government policy change to self detennination over the past two decades has gradually given rise to various structures of Indigenous self government across Australia. Indigenous Local Government Authorities (LGAs) are the governing structure which receive the greatest devolution of State authority, especially those found in Queensland and the Northern Territory. Their statutory basis has developed over a relatively short period of time and is still very much evolving. This paper explores what opportunities exist for Indigenous LGAs to adopt statutory planning mechanisms.
Resumo:
Coral reefs are one of the most diverse habitats in the world [1], yet our understanding of the processes affecting their biodiversity is limited [1-3]. At the local scale, cleaner fish are thought to have a disproportionate effect, in relation to their abundance and size, on the activity of many other fish species, but confirmation of this species' effect on local fish diversity has proved elusive. The cleaner fish Labroides dimidiatus has major effects on fish activity patterns [4] and may indirectly affect fish demography through the removal of large numbers of parasites [5, 6]. Here we show that small reefs where L. dimidiatus had been experimentally excluded for 18 months had half the species diversity of fish and one-fourth the abundance of individuals. Only fish that move among reefs, however, were affected. These fish include large species that themselves can affect other reef organisms [2, 7]. In contrast, the distribution of resident fish was not affected by cleaner fish. Thus, many fish appear to choose reefs based on the presence of cleaner fish. Our findings indicate that a single small [8] and not very abundant [9] fish has a strong influence on the movement patterns, habitat choice, activity, and local diversity and abundance of a wide variety of reef fish species.
Resumo:
In the paper we present two continuous selection theorems in hyperconvex metric spaces and apply these to study xed point and coincidence point problems as well as variational inequality problems in hyperconvex metric spaces.
Resumo:
Subcycling, or the use of different timesteps at different nodes, can be an effective way of improving the computational efficiency of explicit transient dynamic structural solutions. The method that has been most widely adopted uses a nodal partition. extending the central difference method, in which small timestep updates are performed interpolating on the displacement at neighbouring large timestep nodes. This approach leads to narrow bands of unstable timesteps or statistical stability. It also can be in error due to lack of momentum conservation on the timestep interface. The author has previously proposed energy conserving algorithms that avoid the first problem of statistical stability. However, these sacrifice accuracy to achieve stability. An approach to conserve momentum on an element interface by adding partial velocities is considered here. Applied to extend the central difference method. this approach is simple. and has accuracy advantages. The method can be programmed by summing impulses of internal forces, evaluated using local element timesteps, in order to predict a velocity change at a node. However, it is still only statistically stable, so an adaptive timestep size is needed to monitor accuracy and to be adjusted if necessary. By replacing the central difference method with the explicit generalized alpha method. it is possible to gain stability by dissipating the high frequency response that leads to stability problems. However. coding the algorithm is less elegant, as the response depends on previous partial accelerations. Extension to implicit integration, is shown to be impractical due to the neglect of remote effects of internal forces acting across a timestep interface. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The Queensland Government is increasingly using participatory planning as a means to improve infrastructure and service delivery to Indigenous settlements. In addition to technical and economic goals, participatory planning practice seeks also to achieve social development goals, including empowerment, capacity building, community control and ownership. This article presents the findings of an evaluation of one such planning project, conducted at Old Mapoon in 1995. Despite various efforts to follow participatory processes, the plan had mixed success in achieving social development goals. This suggests some misunderstandings between the practice of participatory planning and the workings of local governance. It also presents some opportunities for participatory planning methods to be integrated with more inclusive forms of governance.
Resumo:
In this paper we propose a second linearly scalable method for solving large master equations arising in the context of gas-phase reactive systems. The new method is based on the well-known shift-invert Lanczos iteration using the GMRES iteration preconditioned using the diffusion approximation to the master equation to provide the inverse of the master equation matrix. In this way we avoid the cubic scaling of traditional master equation solution methods while maintaining the speed of a partial spectral decomposition. The method is tested using a master equation modeling the formation of propargyl from the reaction of singlet methylene with acetylene, proceeding through long-lived isomerizing intermediates. (C) 2003 American Institute of Physics.
Resumo:
In this paper we propose a novel fast and linearly scalable method for solving master equations arising in the context of gas-phase reactive systems, based on an existent stiff ordinary differential equation integrator. The required solution of a linear system involving the Jacobian matrix is achieved using the GMRES iteration preconditioned using the diffusion approximation to the master equation. In this way we avoid the cubic scaling of traditional master equation solution methods and maintain the low temperature robustness of numerical integration. The method is tested using a master equation modelling the formation of propargyl from the reaction of singlet methylene with acetylene, proceeding through long lived isomerizing intermediates. (C) 2003 American Institute of Physics.
Resumo:
A Combined Genetic Algorithm and Method of Moments design methods is presented for the design of unusual near-field antennas for use in Magnetic Resonance Imaging systems. The method is successfully applied to the design of an asymmetric coil structure for use at 190MHz and demonstrates excellent radiofrequency field homogeneity.