188 resultados para Halides--Spectra.
Resumo:
Reef fishes present the observer with the most diverse and stunning assemblage of animal colours anywhere on earth. The functions of some of these colours and their combinations are examined using new non-subjective spectrophotometer ic measurements of the colours of fishes and their habitat. Conclusions reached are as follows: (i) the spectra of colours in high spatial frequency patterns are often well designed to be very conspicuous to a colour vision system at close range but well camouflaged at a distance; (ii) blue and yellow the most frequently used colours in reef fishes, may be good for camouflage or communication depending on the background they are viewed against; and (iii) reef fishes use a combination of colour and behaviour to regulate their conspicuousness and crypsis.
Resumo:
Many species of stomatopod crustaceans have multiple spectral classes of photoreceptors in their retinas. Behavioral evidence also indicates that stomatopods are capable of discriminating objects by their spectral differences alone, Most animals use only two to four different types of photoreceptors in their color vision systems, typically with broad sensitivity functions, but the stomatopods apparently include eight or more narrowband photoreceptor classes for color recognition. It is also known that stomatopods use several colored body regions in social interactions. To examine why stomatopods may be so 'concerned' with color, we measured the absorption spectra of visual pigments and intrarhabdomal filters, and the reflectance spectra from different parts of the bodies of several individuals of the gonodactyloid stomatopod species, Gonodactylus smithii. We then applied a model of multiple dichromatic channels for color encoding to examine whether the finely tuned color vision was specifically co-evolved with their complex color signals. Although the eye design of stomatopods seems suitable for detecting color signals of their own, the detection of color signals from other animals, such as reef fishes, can be enhanced as well. Color vision in G. smithii is therefore not exclusively adapted to detect its own color signals, but the spectral tuning of some photoreceptors (e.g. midband Rows 2 and 3) enhances the contrast of certain color signals to a large enough degree to make co-evolution between color vision and these rather specific color signals likely. Copyright (C) 2000 S. Karger AG, Basel.
Resumo:
We propose an absorptive measurement scheme via coupled quantum dots based on studies of the quantum dynamics of coherently coupled dots. The system is described through a Markov master equation that is related to a measurable quantity, the current. We analyse the measurement configuration and calculate the correlations and noise spectra beyond the adiabatic approximation.
Resumo:
We describe a population of compact objects in the centre of the Fornax Cluster which were discovered as part of our 2dF Fornax Spectroscopic Survey. These objects have spectra typical of old stellar systems, but are unresolved on photographic sky survey plates. They have absolute magnitudes - 13 < M-B
Resumo:
With the advent of multi-fibre spectrographs such as the 'Two-Degree Field' (2dF) instrument at the Angle-Australian Telescope, quasar surveys that are free of any preselection of candidates and any biases this implies have become possible for the first time. The first of these is that which is being undertaken as part of the Fornax Spectroscopic Survey, a survey of the area around the Fornax Cluster of galaxies, and aims to obtain the spectra of all objects in the magnitude range 16.5 < b(j) < 19.7. To date, 3679 objects in the central pi -deg(2) area have been successfully identified from their spectral characteristics. Of these, 71 are found to be quasars, 61 with redshifts 0.3 < z < 2.2 and 10 with redshifts z > 2.2. Using this complete quasar sample, a new determination of quasar number counts is made, enabling an independent check of existing quasars surveys. Cumulative counts per square degree at a magnitude limit of b(j) < 19.5 are found to be 11.5 +/- 2.2 for 0.3 < z < 2.2, 2.22 +/- 0.93 for z > 2.2 and 13.7 +/- 3.1 for z > 0.3. Given the likely detection of extra quasars in the Fornax survey, we make a more detailed examination of existing quasar selection techniques. First, looking at the use of a stellar criterion, four of the 71 quasars are 'non-stellar' on the basis of the automated plate measuring facility (APM) b(j) classification, however inspection shows all are consistent with stellar, but misclassified due to image confusion. Examining the ultraviolet excess and multicolour selection techniques, for the selection criteria investigated, ultraviolet excess would find 69 +/- 6 per cent of our 0.3 < z < 2.2 quasars and only 50(-18)(+14), per cent of our z > 2.2 quasars, while the completeness level for multicolour selection is found to be 90(-4)(+3) per cent for 0.3 < z < 2.2 quasars and 80(-12)(+14) per cent for z > 2.2 quasars. The extra quasars detected by our all-object survey thus have unusually red star-like colours, and this appears to be a result of the continuum shape rather than any emission features. An intrinsic dust extinction model may, at least partly, account for the red colours.
Resumo:
EXAFS spectra of [(HC(Ph2PO)(3))(2)Cu](ClO4)(2). 2H(2)O have been measured at room temperature. These show that the CuO6 unit is tetragonally elongated, rather than having the compressed tetragonal geometry previously inferred from the X-ray crystal structure determination. [GRAPHICS]
Resumo:
We present the results of a spectroscopic survey of 675 bright (16.5 < b(J) < 18) galaxies in a 6 degrees field centred on the Fornax cluster with the FLAIR-II spectrograph on the UK Schmidt Telescope. Three galaxy samples were observed: compact galaxies to search for new blue compact dwarfs, candidate M 32-like compact dwarf ellipticals, and a subset of the brightest known cluster members in order to study the cluster dynamics. We measured redshifts for 516 galaxies, of which 108 were members of the Fornax Cluster. Defining dwarf galaxies to be those with b(J) greater than or equal to 15 (M-B greater than or equal to - 16.5), there are a total of 62 dwarf cluster galaxies in our sample. Nine of these are new cluster members previously misidentified as background galaxies. The cluster dynamics show that the dwarf galaxies are still falling into the cluster whereas the giants are virialized. We classified the observed galaxies as late-type if we detected H alpha emission at an equivalent width greater than 1 Angstrom. The spectra were obtained through fixed apertures, so they reflect activity in the galaxy cores, but this does not significantly bias the classifications of the compact dwarfs in our sample. The new classifications reveal a higher rate of star formation among the dwarf galaxies than suggested by morphological classification: 35 per cent have significant H alpha emission indicative of star formations but only 19 per cent were morphologically classified as late-types. The star-forming dwarf galaxies span the full range of physical sizes and we find no evidence in our data for a distinct class of star-forming blue compact dwarf (BCD) galaxy. The distribution of scale sizes is consistent with evolutionary processes which transform late-type dwarfs to early-type dwarfs. The fraction of dwarfs with active star formation drops rapidly towards the cluster centre: this is the usual density-morphology relation confirmed here for dwarf galaxies. The star-forming dwarfs are concentrated in the outer regions of the cluster, the most extreme in an infalling subcluster. We estimate gas depletion time-scales for five dwarfs with detected Hi emission: these are long (of order 10(10) yr), indicating that an active gas removal process must be involved if they are transformed into gas-poor dwarfs as they fall further into the cluster. Finally, in agreement with our previous results, we find no compact dwarf elliptical (M 32-like) galaxies in the Fornax Cluster.
Resumo:
By utilizing the large multiplexing advantage of the Two-degree Field spectrograph on the Anglo-Australian Telescope, we have been able to obtain a complete spectroscopic sample of all objects in a predefined magnitude range, 16.5 < b(j) < 19.7 regardless of morphology, in an area toward the center of the Fornax Cluster of galaxies. Among the unresolved or marginally resolved targets, we have found five objects that are actually at the redshift of the Fornax Cluster; i.e., they are extremely compact dwarf galaxies or extremely large star clusters. All five have absorption-line spectra. With intrinsic sizes of less than 1.1 HWHM (corresponding to approximately 100 pc at the distance of the cluster), they are more compact and significantly less luminous than other known compact dwarf galaxies, yet much brighter than any globular cluster. In this paper we present new ground-based optical observations of these enigmatic objects. In addition to having extremely high central surface brightnesses, these objects show no evidence of any surrounding low surface brightness envelopes down to much fainter limits than is the case for, e.g., nucleated dwarf elliptical galaxies. Thus, if they are not merely the stripped remains of some other type of galaxy, then they appear to have properties unlike any previously known type of stellar system.
Resumo:
It is possible to detect gravitationally-lensed quasars spectroscopically if the spectra obtained during galaxy surveys are searched for the presence of quasar emission lines. The up-coming 6 degree Field (6dF) redshift survey on the United Kingdom Schmidt Telescope will involve obtaining similar to 10(5) spectra of near-infrared selected galaxies to a magnitude limit of K = 13. Applying previously developed techniques implies that at least one lens should be discovered in the 6dF survey, but that as many as ten could be found if quasars typically have B-J - K similar or equal to 8. In this model there could be up to fifty lensed quasars in the, sample, but most of them could only be detected by infrared spectroscopy.
Resumo:
Field-swept pulsed electron paramagnetic resonance (EPR) spectra of a ZBLAN fluoride glass doped with a low concentration of Cr3+ are obtained using echo-detected EPR and hole-burning free induction decay detection. We review the utility of the pulsed EPR technique in generating field-swept EPR spectra, as well as some of the distorting effects that are peculiar to the pulsed detection method. The application of this technique to Cr3+-doped ZBLAN reveals that much of the broad resonance extending from g(eff) = 5.1 to g(eff) = 1.97, characteristic of X-band continuous wave EPR of Cr3+ in glasses, is absent. We attribute this largely to the variation in nutation frequencies across the spectrum that result from sites possessing large fine structure interactions. The description of the spin dynamics of such sites is complicated and we discuss some possible approaches to the simulation of the pulsed EPR spectra.
Resumo:
Solution conformation and calcium binding properties have been investigated for the two cyclic octapeptides cyclo(-D-Thr-D-Val(Thz)-Ile-)(2) (4) and cyclo(-Thr-Gly(Thz)-Ile-Ser-Gly(Thz)-Ile-)(5) and the results are compared to those for the cyclic octapeptides previously studied; ascidiacyclamide (1), patellamide D (2), cyclo(-Thr-D-Val(Thz)-Ile-)(2) (3), and cyclo(-Thr-D-Val-alphaAbu-Ile-)2 (6). Both 4 and 5 contain two heterocyclic thiazole ring constraints but the latter has a larger degree of flexibility as a consequence of the glycine residues within the cyclic framework. The solution conformation of 4 and 5 was determined from H-1 NMR spectra and found to be a twisted figure of eight similar to that for 2. Complexation studies using H-1 NMR and CD spectroscopy yielded 1 : 1 calcium-peptide binding constants (logK) for the two peptides (2.3 (4) and 5.7 (5)). For 5 the magnitude of the binding constant was verified by a competition titration using CD. The different calcium-binding affinities of 3 (logK = 4.0) and 4 is attributed to the stereochemistry of the threonine residue. The magnitude of the binding constant for 5 compared to 3 and 4 (all peptides containing two thiazole ring constrains) demonstrates that the increase in flexibility of the cyclic peptide has a dramatic effect on the Ca2+ binding ability. The affinity for Ca2+ thus decreases in the order (6 similar to 5 > 3 > 2 similar to 1 > 4). The number of carbonyl donors available on each peptide has only a limited effect on calcium binding. The most important factor is the flexibility, which allows for a conformation of the peptide capable of binding calcium efficiently.
Resumo:
We analyze folding phenomena in finely layered viscoelastic rock. Fine is meant in the sense that the thickness of each layer is considerably smaller than characteristic structural dimensions. For this purpose we derive constitutive relations and apply a computational simulation scheme (a finite-element based particle advection scheme; see MORESI et al., 2001) suitable for problems involving very large deformations of layered viscous and viscoelastic rocks. An algorithm for the time integration of the governing equations as well as details of the finite-element implementation is also given. We then consider buckling instabilities in a finite, rectangular domain. Embedded within this domain, parallel to the longer dimension we consider a stiff, layered plate. The domain is compressed along the layer axis by prescribing velocities along the sides. First, for the viscous limit we consider the response to a series of harmonic perturbations of the director orientation. The Fourier spectra of the initial folding velocity are compared for different viscosity ratios. Turning to the nonlinear regime we analyze viscoelastic folding histories up to 40% shortening. The effect of layering manifests itself in that appreciable buckling instabilities are obtained at much lower viscosity ratios (1:10) as is required for the buckling of isotropic plates (1:500). The wavelength induced by the initial harmonic perturbation of the director orientation seems to be persistent. In the section of the parameter space considered here elasticity seems to delay or inhibit the occurrence of a second, larger wavelength. Finally, in a linear instability analysis we undertake a brief excursion into the potential role of couple stresses on the folding process. The linear instability analysis also provides insight into the expected modes of deformation at the onset of instability, and the different regimes of behavior one might expect to observe.
Resumo:
It has recently been stated that the parametrization of the time variables in the one-dimensional (I-D) mixing-frequency electron spin-echo envelope modulation (MIF-ESEEM) experiment is incorrect and hence the wrong frequencies for correlated nuclear transitions are predicted. This paper is a direct response to such a claim, its purpose being to show that the parametrization in land 2-D MIF-ESEEM experiments possesses the same form as that used in other 4-pulse incrementation schemes and predicts the same correlation frequencies. We show that the parametrization represents a shearing transformation of the 2-D time-domain and relate the resulting frequency domain spectrum to the HYSCORE spectrum in terms of a skew-projection. It is emphasized that the parametrization of the time-domain variables may be chosen arbitrarily and affects neither the computation of the correct nuclear frequencies nor the resulting resolution. The usefulness or otherwise of the MIF parameters \gamma\ > 1 is addressed, together with the validity of the original claims of the authors with respect to resolution enhancement in cases of purely homogeneous and inhomogeneous broadening. Numerical simulations are provided to illustrate the main points.
Resumo:
The Fornax Cluster Spectroscopic Survey (FCSS) project utilizes the Two-degree Field (2dF) multi-object spectrograph on the Anglo-Australian Telescope (AAT). Its aim is to obtain spectra for a complete sample of all 14 000 objects with 16 5 less than or equal to b(j) less than or equal to 19 7 irrespective of their morphology in a 12 deg(2) area centred on the Fornax cluster. A sample of 24 Fornax cluster members has been identified from the first 2dF field (3.1 deg(2) in area) to be completed. This is the first complete sample of cluster objects of known distance with well-defined selection limits. Nineteen of the galaxies (with -15.8 < M-B < 12.7) appear to be conventional dwarf elliptical (dE) or dwarf S0 (dS0) galaxies. The other five objects (with -13.6 < M-B < 11.3) are those galaxies which were described recently by Drinkwater et al. and labelled 'ultracompact dwarfs' (UCDs). A major result is that the conventional dwarfs all have scale sizes alpha greater than or similar to 3 arcsec (similar or equal to300 pc). This apparent minimum scale size implies an equivalent minimum luminosity for a dwarf of a given surface brightness. This produces a limit on their distribution in the magnitude-surface brightness plane, such that we do not observe dEs with high surface brightnesses but faint absolute magnitudes. Above this observed minimum scale size of 3 arcsec, the dEs and dS0s fill the whole area of the magnitude-surface brightness plane sampled by our selection limits. The observed correlation between magnitude and surface brightness noted by several recent studies of brighter galaxies is not seen with our fainter cluster sample. A comparison of our results with the Fornax Cluster Catalog (FCC) of Ferguson illustrates that attempts to determine cluster membership solely on the basis of observed morphology can produce significant errors. The FCC identified 17 of the 24 FCSS sample (i.e. 71 per cent) as being 'cluster' members, in particular missing all five of the UCDs. The FCC also suffers from significant contamination: within the FCSS's field and selection limits, 23 per cent of those objects described as cluster members by the FCC are shown by the FCSS to be background objects.
Resumo:
The integral of the Wigner function of a quantum-mechanical system over a region or its boundary in the classical phase plane, is called a quasiprobability integral. Unlike a true probability integral, its value may lie outside the interval [0, 1]. It is characterized by a corresponding selfadjoint operator, to be called a region or contour operator as appropriate, which is determined by the characteristic function of that region or contour. The spectral problem is studied for commuting families of region and contour operators associated with concentric discs and circles of given radius a. Their respective eigenvalues are determined as functions of a, in terms of the Gauss-Laguerre polynomials. These polynomials provide a basis of vectors in a Hilbert space carrying the positive discrete series representation of the algebra su(1, 1) approximate to so(2, 1). The explicit relation between the spectra of operators associated with discs and circles with proportional radii, is given in terms of the discrete variable Meixner polynomials.