100 resultados para GENICULOHYPOTHALAMIC TRACT
Resumo:
Infection with group A streptococci (GAS) can lead to rheumatic fever (RF) and rheumatic heart disease (RHD) which are a major health concern particularly in indigenous populations worldwide, and especially in Australian Aboriginals. A primary route of GAS infection is via the upper respiratory tract, and therefore, a major goal of research is the development of a mucosal-based GAS vaccine, The majority of the research to date has focused on the GAS M protein since immunity to GAS is mediated by M protein type-specific opsonic antibodies. There are two major impediments to the development of a vaccine-the variability in M proteins and the potential for the induction of an autoimmune response. To develop a safe and broad-based vaccine, we have therefore focused on the GAS M protein conserved C-region, and have identified peptides, J8 and the closely related J8 peptide (J14), which may be important in protective immunity to GAS infection. Using a mucosal animal model system, our data have shown a high degree of throat GAS colonisation in B10.BR mice 24 h following intranasal immunisation with the mucosal adjuvant, cholera toxin B subunit (CTB), and/or diptheria toxoid (dT) carrier, or PBS alone, and challenge with the M1 GAS strain. However, GAS colonisation of the throat was significantly reduced following intranasal immunisation of mice with the vaccine candidate J8 conjugated to dT or J14-dT when administered with CTB. Moreover, J8-dT/CTB and J14-dT/CTB-immunised mice had a significantly higher survival when compared to CTB and PBS-immunised control mice. These data indicate that immunity to GAS infection can be evoked by intranasal immunisation with a GAS M protein C-region peptide vaccine that contains a protective B cell epitope and lacks a T cell autoepitope. (C) 2002 Published by Elsevier Science Ltd.
Resumo:
Keratinocyte Growth factor (KGF) is an epithelial cell growth factor of the fibroblast growth factor family and is produced by fibroblasts and microvascular endothelium in response to proinflammatory cytokines and steroid hormones. KGF is a heparin binding growth factor that exerts effects on epithelial cells in a paracrine fashion through interaction with KGF receptors. Preclinical data has demonstrated that KGF can prevent lung and gastrointestinal toxicity following chemotherapy and radiation and preliminary clinical data in the later setting supports these findings. In the experimental allogeneic bone marrow transplant scenario KGF has shown significant ability to prevent graft-versus-host disease by maintaining gastrointestinal tract integrity and acting as a cytokine shield to prevent subsequent proinflammatory cytokine generation. Within this setting KGF has also shown an ability to prevent experimental idiopathic pneumonia syndrome by stimulating production of surfactant protein A, promoting alveolar epithelialization and attenuating immune-mediated injury. Perhaps most unexpectantly, KGF appears able to maintain thymic function during allogeneic stern cell transplantation and so promote T cell engraftment and reconstitution. These data suggest that KGF will find a therapeutic role in the prevention of epithelial toxicity following intensive chemotherapy and radiotherapy protocols and in allogeneic stem cell transplantation.
Resumo:
Around 50% of men 51-60 years of age have pathological benign prostatic hyperplasia (BPH). Pharmacotherapy for BPH includes the 5alpha-reductase inhibitor finasteride, and alpha(1)-adrenoceptor antagonists. Finasteride reduces prostate volume and symptom scores, while increasing peak urinary flow rates. The main problem with finasteride treatment is that it increases the incidence of ejaculation disorders. All of the alpha(1)-adrenoceptor antagonists have been shown to reduce symptom scores and increase peak urinary flow rates in BPH. The nonselective alpha(1)-adrenoceptor antagonists (prazosin, terazosin and doxazosin) were developed as antihypertensives, and hypotensive-related side effects are the main problem with these agents in BPH. These side effects can be diminished by reducing peak concentrations of the drugs, as with once-daily alfuzosin, or by using the uroselective antagonist tamsulosin. Phytopharmaceuticals are commonly used in the treatment of BPH, such as saw palmetto berry which has been shown to improve the symptoms and peak urinary flow rate. Androgen receptor antagonists are not used in BPH because of their adverse effects. Newer drugs under development for the treatment of BPH include alpha(1)-adrenoceptor antagonists that show more selectivity for alpha(1A)-adrenoceptors than tamsulosin, combined 5alpha-reductase/alpha(1)-adrenoceptor inhibitors and combined type 1/type 2 5alpha-reductase inhibitors. New targets for the drug treatment of BPH include indothelin, growth factors, estrogens and the phosphodiesterase isoenzymes.
Resumo:
Using the Roche LightCycler we developed a real-time reverse transcriptase polymerase chain reaction (RT-PCR) assay using the Influenza A LightCycler RT-PCR (FA-LC-RTPCR) for the rapid detection of Influenza A. The assay was used to examine 178 nasopharyngeal aspirate (NPA) samples, from patients with clinically recognised respiratory tract infection, for the presence of Influenza A RNA. The results were then compared to a testing algorithm combining direct immunofluorescent assy (DFA) and a culture augmented DFA (CA-DFA) assay. In total, 76 (43%) specimens were positive and 98 (55%) specimens were negative by both the FA-LC-RTPCR and the DFA and CA-DFA algorithm. In addition, the FA-LC-RTPCR detected a further 4 (2%) positive specimens, which were confirmed by a conventional RT-PCR method. The high level of sensitivity and specificity, combined with the rapid turnaround time for results, makes the LC-RT-PCR assay suitable for the detection of Influenza A in clinical specimens.
Resumo:
The recent description of the respiratory pathogen human metapneumovirus (hMPV) has highlighted a deficiency in current diagnostic techniques for viral agents associated with acute lower respiratory tract infections. We describe two novel approaches to the detection of viral RNA by use of reverse transcriptase PCR (RT-PCR). The PCR products were identified after capture onto a solid-phase medium by hybridization with a sequence-specific, biotinylated oligonucleotide probe. The assay was applied to the screening of 329 nasopharyngeal aspirates sampled from patients suffering from respiratory tract disease. These samples were negative for other common microbial causes of respiratory tract disease. We were able to detect hMPV sequences in 32 (9.7%) samples collected from Australian patients during 2001. To further reduce result turnaround times we designed a fluorogenic TaqMan oligoprobe and combined it with the existing primers for use on the LightCycler platform. The real-time RT-PCR proved to be highly reproducible and detected hMPV in an additional 6 out of 62 samples (9.6%) tested during the comparison of the two diagnostic approaches. We found the real-time RT-PCR to be the test of choice for future investigation of samples for hMPV due to its speed, reproducibility, specificity, and sensitivity.
Resumo:
Bovine Respiratory Disease (BRD) results from a complex, multifactorial interaction of stressors, animal susceptibility, and respiratory pathogens. The infectious agents associated with BRD are ubiquitous among cattle populations. Typically, one or a combination of stressors are necessary to initiate BRD. Prevention of BRD should, therefore, address management procedures to minimise stressors. Administration of vaccines against BRD agents may help reduce the incidence of BRD but is unlikely to eliminate the condition. The effectiveness of antimicrobials in the treatment of BIRD depends primarily on early recognition and treatment. The use of antioxidant vitamins, minerals or other agents in the prevention and treatment of BRD warrants further research.
Resumo:
Control recommendations are presented for four genetic or familial diseases that cause significant morbidity and mortality in affected English Bull Terriers. Bull Terrier polycystic kidney disease is an autosomal dominant disease diagnosed by detecting a minimum of three renal cysts, with cysts present in both kidneys, and similarly affected family members to confirm the inherited nature of the cysts. Bull Terrier hereditary nephritis is an autosomal dominant disease diagnosed in otherwise normal animals with urinary protein: creatinine ratios persistently >0.3 and no significant urinary sediment, a family history of the disease, and characteristic glomerular basement membrane lesions. Mitral valve myxomatous degeneration and left ventricular outflow tract obstruction in Bull Terriers are familial diseases diagnosed by auscultating characteristic murmurs in affected animals. Excluding animals with these clinical signs from the breeding pool will reduce the prevalence rates of these diseases, however maintenance of an effective population size is also important. Providing breeders with information on genetics, including the risks associated with inbreeding and the benefits of outcrossing, is likely to improve canine breeding practices, thus increasing fitness and fecundity of these purebred dogs.
Resumo:
Respiratory syncytial virus (RSV) is a ubiquitous human pathogen and the leading cause of lower respiratory tract infections in infants. Infection of cells and subsequent formation of syncytia occur through membrane fusion mediated by the RSV fusion protein (RSV-F). A novel in vitro assay of recombinant RSV-F function has been devised and used to characterize a number of escape mutants for three known inhibitors of RSV-F that have been isolated. Homology modeling of the RSV-F structure has been carried out on the basis of a chimera derived from the crystal structures of the RSV-F core and a fragment from the orthologous fusion protein from Newcastle disease virus (NDV). The structure correlates well with the appearance of RSV-F in electron micrographs, and the residues identified as contributing to specific binding sites for several monoclonal antibodies are arranged in appropriate solvent-accessible clusters. The positions of the characterized resistance mutants in the model structure identify two promising regions for the design of fusion inhibitors. (C) 2003 Elsevier Science (USA). All rights reserved.
Resumo:
Pili of pathogenic Neisseria are major virulence factors associated with adhesion, cytotoxicity, twitching motility, autoaggregation, and DNA transformation. Pili are modified posttranslationally by the addition of phosphorylcholine. However, no genes involved in either the biosynthesis or the transfer of phosphorylcholine in Neisseria meningitidis have been identified. In this study, we identified five candidate open reading frames (ORFs) potentially involved in the biosynthesis or transfer of phosphorylcholine to pilin in N. meningitidis. Insertional mutants were constructed for each ORF in N. meningitidis strain C311#3 to determine their effect on phosphorylcholine expression. The effect of the mutant ORFs on the modification by phosphorylcholine was analyzed by Western analysis with phosphorylcholine-specific monoclonal antibody TEPC-15. Analysis of the mutants showed that ORF NMB0415, now defined as pptA (pilin phosphorylcholine transferase A), is involved in the addition of phosphorylcholine to pilin in N. meningitidis. Additionally, the phase variation (high frequency on-off switching of expression) of phosphorylcholine on pilin is due to changes in a homopolymeric guanosine tract in pptA.