100 resultados para Donor dopant
Resumo:
Doped ceria (CeO2) compounds are fluorite-type oxides which show oxide ionic conductivity higher than yttria-stabilized zirconia in oxidizing atmosphere. As a consequence of this, considerable interest has been shown in applications of these materials for low or intermediate temperature operation of solid-oxide fuel cells (SOFCs). In this study, the effective index was suggested to maximize the ionic conductivity in La2O3-CeO2 based oxides. The index considers the fluorite structure, and combines the expected oxygen vacancy level with the ionic radius mismatch between host and dopant cations. Using this approach, the ionic conductivity of this system has been optimized and tested under operating conditions of SOFCs. LaxCe1-xO2-delta (x = 0.125, 0.15, 0.175, and 0.20), (LaxSr1-x)(0.175)Ce0.825O2-delta (x = 0.1, 0.2, and 0.4), and (La1-xSr0.2Bax)(0.175)Ce0.825O2-delta (x 5 0.03, 0.05, and 0.07) were prepared and characterized as the specimens with low, intermediate, and high index, respectively. The ionic conductivity was increased with increasing suggested index. The transmission electron microscopy analysis suggested that partial substitution of alkaline earth elements in place of La into Ce site contributes to a decrease of microdomain size and an improvement of conductivity. (La0.75Sr0.2Ba0.05)(0.175)Ce0.825O1.891 with high index and small microdomains exhibited the highest conductivity, wide ionic domain, and good performance in SOFCs. (C) 2003 The Electrochemical Society.
Resumo:
In order to meet increasingly stringent European discharge standards, new applications and control strategies for the sustainable removal of ammonia from wastewater have to beimplemented. In this paper we discuss anitrogen removal system based on the processesof partial nitrification and anoxic ammoniaoxidation (anammox). The anammox process offers great opportunities to remove ammonia in fully autotrophic systems with biomass retention. No organic carbon is needed in such nitrogenremoval system, since ammonia is used a selectron donor for nitrite reduction. The nitrite can be produced from ammonia in oxygen-limited biofilm systems or in continuous processes without biomass retention. For successful implementation of the combined processes, accurate biosensors for measuring ammonia and nitrite concentrations, insight inthe complex microbial communities involved, and new control strategies have to be developed and evaluated.
Resumo:
This paper documents the successful development of an artificial insemination (AI) programme for the Koala Phascolurctos cinereus. The protocols for trials involving two methods to induce ovulation and two insemination techniques are described. In Trial 1, interrupted coitus using a 'teaser'♂ successfully induced ovulation in nine Koalas. Five ♀♀ were inseminated while conscious using a modified 'foley catheter' (Cook insemination catheter) resulting in the births of two offspring. The other four ♀♀ were anaesthetized and inseminated using a technique which allowed visualization of the most cranial portion of the urogenital sinus, where semen was deposited using a 3.5 Fr. 'Tom-cat catheter' (urogen-itoscopic insemination). Three of the four ♀♀ inseminated by this technique produced pouch young. Microsatellite analysis of DNA from the pouch young excluded the teaser ♀♀ as possible sires, confirming that all offspring were sired by donor sperm. In Trial 2, eight ♀♀ were induced to ovulate by injecting them with 250 International Units of human chorionic gonadotrophin (hCG). A luteal phase was confirmed in all eight ♀♀ but only one gave birth following urogenitoscopic insemination. The Koala pouch young in this study are the first of any marsupial to be conceived and born following A1 procedures. Details of the A1 procedures used are presented and the significance of A1 to the conservation biology of P. cinereus discussed.
Resumo:
In order to establish the relationship between solute lipophilicity and skin penetration (including flux and concentration behavior), we examined the in vitro penetration and membrane concentration of a series of homologous alcohols (C2-C10) applied topically in aqueous solutions to human epidermal, full-thickness, and dermal membranes. The partitioning/distribution of each alcohol between the donor solution, stratum corneum, viable epidermis, dermis, and receptor phase compartments was determined during the penetration process and separately to isolated samples of each tissue type. Maximum flux and permeability coefficients are compared for each membrane and estimates of alcohol diffusivity are made based on flux/concentration data and also the related tissue resistance (the reciprocal of permeability coefficient) for each membrane type. The permeability coefficient increased with increasing lipophilicity to alcohol C8 (octanol) with no further increase for C10 (decanol). Log vehicle:stratum corneum partition coefficients were related to logP , and the concentration of alcohols in each of the tissue layers appeared to increase with lipophilicity. No difference was measured in the diffusivity of smaller more polar alcohols in the three membranes; however, the larger more lipophilic solutes showed slower diffusivity values. The study showed that the dermis may be a much more lipophilic environment than originally believed and that distribution of smaller nonionized solutes into local tissues below a site of topical application may be estimated based on knowledge of their lipophilicity alone.
Resumo:
Biological nitrogen removal via nitrite pathway in wastewater treatment is very important especially in the cost of aeration and as an electron donor for denitrification. Wastewater nitrification and nitrite accumulations were carried out in a biofilm reactor. The biofilm reactor showed almost complete nitrification and most of the oxidized ammonium was present as nitrite at the ammonium load of 1.2 kg N/m3/d. Nitrite accumulation was achieved by the selective inhibition of nitrite oxidizers by free ammonia and oxygen limitation. Nitrite oxidation activity was recovered as soon as the inhibition factor was removed. Fluorescence in situ hybridization studies of the nitrite accumulating biofilm system have shown that genus Nitrosomonas which is specifically hybridized with probe NSM 156 was the dominant nitrifying bacteria while Nitrospira was less abundant than those of normal nitrification systems. Further FISH analysis showed that the combinations of Nitrosomonas and Nitrospira cells were identified as important populations of nitrifying bacteria in an autotrophic nitrifying biofilm system.
Nitrification of high strength ammonia wastewtaer treatment - process selection is the major factor.
Resumo:
Biological nitrogen removal via the nitrite pathway in wastewater treatment is very important in Saving the cost of aeration and as an electron donor for denitrification. Wastewater nitrification and nitrite accumulation were carried out in a biofilm airlift reactor with autotrophic nitrifying biofilm. The biofilm reactor showed almost complete nitrification and most of the oxidized ammonium was present as nitrite at the ammonium load of 1.5 to 3.5 kg N/m3.d. Nitrite accumulation was stably achieved by the selective inhibition of nitrite oxidizers with free ammonia and dissolved oxygen limitation. Stable 100% conversion to nitrite could also be achieved even under the absence of free ammonia inhibition on nitrite oxidizers. Batch ammonium oxidation and nitrite oxidation with nitrite accumulating nitrifying biofilm showed that nitrite Oxidation was completely inhibited when free ammonia is higher than 0.2 mg N/L. However, nitrite oxidation activity was recovered as soon as the free ammonia concentration was below the threshold level when dissolved oxygen concentration was not the limiting factor. Fluorescence in situ hybridization analysis of cryosectioned nitrite accumulating nitrifying biofilm showed that the β-subclass of Proteobacteria, where ammonia oxidizers belong, was distributed outside the biofilm whereas the α-subclass of Proteobacteria, where nitrite oxidizers belong, was found mainly in the inner part of the biofilm. It is likely that dissolved oxygen deficiency or limitation in the inner part of the nitrifying biofilm, where nitrite oxidizers exist, is responsible for the complete shut down of the nitrite oxidizers activity under the absence of free ammonia inhibition.
Resumo:
The pentadentate chelating agent, 2,6-diacetylpyridinebis(S-benzyldithiocarbazate) (H2SNNNS) reacts with zinc(II) and cadmium(II) ions forming stable complexes of empirical formula, [M(SNNNS)] (M=Zn2+, Cd2+; SNNNS2 =doubly deprotonated anionic form of the Schiff base). These complexes have been characterized by a variety of physico-chemical techniques. IR and H-1 NMR spectral evidence indicate that the Schiff base coordinates to the zinc(II) and cadmium(II) ions via the pyridine nitrogen atoms, the azomethine nitrogen atoms and the mercaptide sulfur atoms. The crystal and molecular structure of the zinc(II) complex has been determined by X-ray diffraction. The complex is a dimer in which the pyridine nitrogen atom,the azomethine nitrogen atom and the thiolate sulfur atom from one ligand coordinate to one of the zinc(II) ions whereas the azomethine and thiolate sulfur atoms from another ligand complete pentacoordination around the zinc(II) ion, the ligands being coordinated in their deprotonated forms. The coordination geometry about each zinc(II) can be considered as intermediate between a square-pyramid and trigonal-bipyramid. The cadmium(II) complex is also assigned with a dimeric structure. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
The X-ray crystal structures are reported of four novel and potentially O,N,S-tridentate donor ligands that demonstrate antitumour activity. These ligands are 1-[(4-methylthiosemicarbazono)methyl]-2-naphthol, C13H13N3OS, (III), 1-[(4-ethylthiosemicarbazono)methyl]-2-naphthol, C14H15N3OS, (IV), 1-[(4-phenylthiosemicarbazono)methyl]-2-naphthol, C18H15N3OS, (V), and 1-[(4,4-dimethylthiosemicarbazono)methyl]-2-naphthol dimethyl sulfoxide solvate, C14H15N3OS.C2H6OS, (VI). These chelators are N4-substituted thiosemicarbazones, each based on the same parent aldehyde, namely 2-zhydroxynaphthalene-1-carboxaldehyde isonicotinoylhydrazone. Conformational variations within this series are discussed in relation to the optimum conformation for metal-ion binding.
Resumo:
Electronic energy transfer (EET) rate constants between a naphthalene donor and anthracene acceptor in [ZnL4a](ClO4)(2) and [ZnL4b](ClO4)(2) were determined by time-resolved fluorescence where L-4a and L-4b are the trans and cis isomers of 6-((anthracen-9-yl-methyl)amino)-6,13-dimethyl-13-((naphthalen-1-yl-methyl)amino)-1,4,8,11-tetraazacyclotetradecane, respectively. These isomers differ in the relative disposition of the appended chromophores with respect to the macrocyclic plane. The trans isomer has an energy transfer rate constant (k(EET)) of 8.7 x 10(8) s(-1), whereas that of the cis isomer is significantly faster (2.3 x 10(9) s(-1)). Molecular modeling was used to determine the likely distribution of conformations in CH3CN solution for these complexes in an attempt to identify any distance or orientation dependency that may account for the differing rate constants observed. The calculated conformational distributions together with analysis by H-1 NMR for the [ZnL4a](2+) trans complex in the common trans-III N-based isomer gave a calculated Forster rate constant close to that observed experimentally. For the [ZnL4b](2+) cis complex, the experimentally determined rate constant may be attributed to a combination of trans-Ill and trans-I N-based isomeric forms of the complex in solution.
Resumo:
The major trans (1) and minor cis (2) isomers of 1,4,8,11-tetraazacyclotetradecane-6,13-dicarboxylate have been characterized as the complexes [Co(1)](ClO4) and [Co(H-2)(OH2)]Cl(ClO4).H2O. The former crystallized in the C-2/c space group and the latter in the P2(1)/c space group, with cell parameters a 16.258(7), b 9.050(3), c 15.413(6) Angstrom, beta133.29(3)degrees, and a 9.694(4), b 16.135(1), c 12.973(5) Angstrom, beta 93.00(2)degrees, respectively. Their characterization completes identification of the respective trans and cis isomers for the series of C-pendant macrocycles also including 1,4,8,11-tetraazacyclotetradecane-6-amine-13-carboxylate ((3), (4)) and 1,4,8,11-tetraazacyclotetradecane-6,13-diamine ((5), (6)). The complexes show limited distortion from octahedral geometry with the strain in the presence of the coordinated C-pendant carboxylate significantly reduced compared with that for the C-pendant amine in analogues, a consequence mainly of six-membered as opposed to five-membered chelate rings involving the pendant donor. A comparison of the physical properties for the trans isomers of the octahedral complexes of (1), (3), and (5), which reflect progressively increasing strain, is presented.