165 resultados para Cylindrical cavity
Resumo:
In a previous study, we found that the cytokine (human) leukemia inhibitory factor (hLIF) significantly reduced plasma cholesterol levels and the accumulation of lipid in aortic tissues of cholesterol-fed rabbits after 4 weeks of treatment. The mechanisms by which this occurs were investigated in the present study. This involved examining the effect of hLIF on (1) the level of plasma cholesterol at different times throughout the 4-week treatment and diet period; (2) smooth muscle cell (SMC) and macrophage-derived foam cell formation in vitro; and (3) LDL receptor expression and uptake in the human hepatoma cell line HepG2. At time zero, an osmotic minipump (2-mL capacity; infusion rate, 2.5 mu L/h; 28 days) containing either hLIF (30 mu g.kg(-1).d(-1)) or saline was inserted into the peritoneal cavity of New Zealand White rabbits (N=24). Rabbits were divided into four groups of six animals each. Group 1 received a normal diet/saline; group 2, a normal diet/hLIF; group 3, a 1% cholesterol diet/saline; and group 4, a 1% cholesterol diet/hLIF. hLIF had no effect on the plasma lipids or artery wall of group 2 rabbits (normal diet). However, in group 4 rabbits, plasma cholesterol levels and the percent surface area of thoracic aorta covered by fatty streaks was decreased by approximate to 30% and 80%, respectively, throughout all stages of the 4-week treatment period. In vitro, hLIF failed to prevent lipoprotein uptake by either SMCs or macrophages (foam cell formation) when the cells were exposed to P-VLDL for 24 hours. In contrast, hLIF (100 ng/mL) added to cultured human hepatoma HepG2 cells induced a twofold or threefold increase in intracellular lipid accumulation in the medium containing 10% lipoprotein-deficient serum or 10% fetal calf serum, respectively. This was accompanied by a significant non-dose-dependent increase in LDL receptor expression in hLIF-treated HepG2 cells incubated with LDL (20 mu g/mL) when compared with controls (P
Resumo:
We propose a simple modification of the experimental scheme employed by Brune rt ni. [Phys. Rev. Lett. 79, 4887 (1996)] for the generation and detection of a Schrodinger cat state, in which the decoherence of the cat state can be significantly slowed down using an appropriate feedback.
Resumo:
We consider solutions to the second-harmonic generation equations in two-and three-dimensional dispersive media in the form of solitons localized in space and time. As is known, collapse does not take place in these models, which is why the solitons may be stable. The general solution is obtained in an approximate analytical form by means of a variational approach, which also allows the stability of the solutions to be predicted. Then, we directly simulate the two-dimensional case, taking the initial configuration as suggested by the variational approximation. We thus demonstrate that spatiotemporal solitons indeed exist and are stable. Furthermore, they are not, in the general case, equivalent to the previously known cylindrical spatial solitons. Direct simulations generate solitons with some internal oscillations. However, these oscillations neither grow nor do they exhibit any significant radiative damping. Numerical solutions of the stationary version of the equations produce the same solitons in their unperturbed form, i.e., without internal oscillations. Strictly stable solitons exist only if the system has anomalous dispersion at both the fundamental harmonic and second harmonic (SH), including the case of zero dispersion at SH. Quasistationary solitons, decaying extremely slowly into radiation, are found in the presence of weak normal dispersion at the second-harmonic frequency.
Resumo:
A new variation of holographic interferometry has been utilized to perform simultaneous two-wavelength measurements, allowing quantitative analysis of the heavy particle and electron densities in a superorbital facility. An air test gas accelerated to 12 km/s was passed over a cylindrical model, simulating reentry conditions encountered by a space vehicle on a superorbital mission. Laser beams with two different wavelengths have been overlapped, passed through the test section, and simultaneously recorded on a single holographic plate. Reconstruction of the hologram generated two separate interferograms at different. angles from which the quantitative measurements were made. With this technique, a peak electron concentration of (5.5 +/- 0.5) x 10(23) m(-3) was found behind a bow shock on a cylinder. (C) 1997 Optical Society of America.
Resumo:
We examine subnatural phase-dependent linewidths in the fluorescence spectrum of a three-level atom damped by a narrow-bandwidth squeezed vacuum in a cavity. Using the dressed-atom model approach of a strongly driven three-level cascade system, we derive the master equation of the system from which we obtain simple analytical expressions for the fluorescence spectrum. We show that the phase effects depend on the bandwidths of the squeezed vacuum and the cavity relative to the Rabi frequency of the driving fields. When the squeezing bandwidth is much larger than the Rabi frequency, the spectrum consists of five lines with only the central and outer sidebands dependent on the phase. For a squeezing bandwidth much smaller than the Rabi frequency the number of lines in the spectrum and their phase properties depend on the frequency at which the squeezing and cavity modes are centered. When the squeezing and cavity modes are centered on the inner Rabi sidebands, the spectrum exhibits five lines that are completely independent of the squeezing phase with only the inner Rabi sidebands dependent on the squeezing correlations. Matching the squeezing and cavity modes to the outer Rabi sidebands leads to the disappearance of the inner Rabi sidebands and a strong phase dependence of the central line and the outer Rabi sidebands. We find that in this case the system behaves as an individual two-level system that reveals exactly the noise distribution in the input squeezed vacuum. [S1050-2947(97)00111-X].
Resumo:
A feedback model based on direct photodetection and micromaser-like atomic injection is proposed for the preservation of quantum coherence in a cavity. We show that in this way it is possible to slow down significantly the decoherence of Schrodinger cat states.
Resumo:
Schistosoma mansoni masks its surface with adsorbed host proteins including erythrocyte antigens, immunoglobulins, major histocompatibility complex class I, and beta (2)-microglobulin (beta (2)m), presumably as a means of avoiding host immune responses, How this is accomplished has not been explained. To identify surface receptors for host proteins, we biotinylated the tegument of live S, mansoni adults and mechanically transformed schistosomula and then removed the parasite surface with detergent, Incubation of biotinylated schistosome surface extracts witt l human immunoglobulin G (IgG) Fc-Sepharose resulted in purification of a 97-kDa protein that was subsequently identified as paramyosin (Pmy), using antiserum specific for recombinant Pmy, Fc also bound recombinant S. mansoni Pmy and native S. japonicum Pmy, Antiserum to Pmy decreased the binding of Pmy to Fc-Sepharose, and no proteins bound after removal of Pmy from extracts. Fluoresceinated human Fe bound to the surface, vestigial penetration glands, and nascent oral cavity of mechanically transformed schistosomula, and rabbit anti-Pmy Fab fragments ablated the binding of Fc to the schistosome surface, Pmy coprecipitated with host IgG from parasite surface extracts, indicating that complexes formed on the parasite surface as well as in vitro. Binding of Pmy to Fe was not inhibited by soluble protein A, suggesting that Pmy does not bind to the region between the CH2 and CH3 domains used by many other Fc-binding proteins. beta (2)m did not bind to the schistosome Fc receptor (Pmy), a finding that contradicts reports from earlier workers but did bind to a heteromultimer of labeled schistosomula surface proteins, This is the first report of the molecular identity of a schistosome Fc receptor; moreover it demonstrates an additional aspect of the unusual and multifunctional properties of Pmy from schistosomes and other parasitic flatworms.
Resumo:
RECENT ANXIETY about the treatment of acute otitis media has been precipitated by a resistance to antibiotics by the common pathogens that can cause this infection.1, 2 The medical profession is facing an increasingly impotent option in the form of antibiotics, prompting physicians around the world to consider alternatives. In this issue of the ARCHIVES, Pichichero and Poole3 have undertaken a comprehensive study involving pediatricians and otorhinologists. The objectives were to assess their recognition of the physical findings of acute otitis media and their ability to perform myringotomy. The principal issue is the safety of performing myringotomy in children with acute otitis media. Because this is an office procedure in which a general anesthetic is not administered, the child is strapped to a papoose board and held down. Myringotomy is not without potential serious complications. The superior part of the middle ear cavity contains the ossicles and the chorda tympani branch . . . [Full Text of this Article]
Resumo:
Lecithocladium invasor n.sp. is described from the oesophagus of Naso annulatus, N. tuberosus and N. vlamingii on the Great Barrier Reef, Australia. The worms penetrate the oesophageal mucosa and induce chronic transmural nodular granulomas, which expand the full thickness of the oesophageal wall and protrude both into the oesophageal lumen and from the serosal surface. We observed two major types of lesions: large ulcerated, active granulomas, consisting of a central cavity containing a single or multiple live worms; and many smaller chronic fibrous submucosal nodules. Small, identifiable but attenuated, worms and degenerate worm fragments were identified within some chronic nodules. Co-infection of the posterior oesophagus of the same Naso species with Lecithocladium chingi was common. L. chingi is redescribed from N. annulatus, N. brevirostris, N. tuberosus and A vlamingii. Unlike L. invasor n.sp., L. chingi was not associated with significant lesions. The different pathenogenicity of the two species in acanthurid fish is discussed.
Resumo:
Recent advances in several experimental techniques have enabled detailed structural information to be obtained for floating (Langmuir) monolayers and Langmuir-Blodgett films. These techniques are described briefly and their application to the study of films of fatty acids and their salts is discussed. Floating monolayers on aqueous subphases have been shown to possess a complex polymorphism with phases whose structures may be compared to those of smectic mesophases. However, only those phases that exist at high surface pressures are normally used in Langmuir-Blodgett (LB) deposition. In single LB monolayers of fatty acids and fatty acid salts the acyl chains are in the all-cans conformation with their long axes normal to the substrate. The in-plane molecular packing is hexagonal with long-range bond orientational order and short-range positional order: known as the hexatic-B structure. This structure is found irrespective of the phase of the parent floating monolayer. The structures of multilayer LB films are similar to the structures of their bulk crystals, consisting of stacked bilayer lamellae. Each lamella is formed from two monolayers of fatty acid molecules or ions arranged head to head and held together by hydrogen bonding between pairs of acids or ionic bonding through the divalent cations. With acids the acyl chains are tilted with respect to the substrate normal and have a monoclinic structure, whereas the salts with divalent cations may have the chains normal to the substrate or tilted. The in-plane structures are usually centred rectangular with the chains in the trans conformation and packed in a herringbone pattern, Multilayer films of the acids show only a single-step order-disorder transition at the malting point, This temperature tends to rise as the number of layers increases. Complex changes occur when multilayer films of the salts are heated. Disorder of the chains begins at low temperatures but the arrangement of the head groups does not alter until the melting temperature is reached, Slow heating to a temperature just below the melting temperature gives, with some salts, a radical change in phase. The lamellar structure disappears and a new phase consisting of cylindrical rods lying parallel to the substrate surface and stacked in a hexagonal pattern is formed, In each rod the cations are aligned along the central axis surrounded by the disordered acyl chains. (C) 2001 Elsevier Science B,V. All rights reserved.
Resumo:
During the course of transmission electron microscopic studies of adult Ancylostoma caninum removed from a dog, several Giardia trophozoites were found in sections of the buccal cavity, oesophagus and intestine of several hookworms. Although the protozoa appeared viable, this unusual finding probably represents accidental uptake by, rather than an established infection of, the hookworm. It is feasible, however, that the trophozoites might have survived and even multiplied in this aberrant site. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
This paper deals with non-Markovian behavior in atomic systems coupled to a structured reservoir of quantum electromagnetic field modes, with particular relevance to atoms interacting with the field in high-Q cavities or photonic band-gap materials. In cases such as the former, we show that the pseudomode theory for single-quantum reservoir excitations can be obtained by applying the Fano diagonalization method to a system in which the atomic transitions are coupled to a discrete set of (cavity) quasimodes, which in turn are coupled to a continuum set of (external) quasimodes with slowly varying coupling constants and continuum mode density. Each pseudomode can be identified with a discrete quasimode, which gives structure to the actual reservoir of true modes via the expressions for the equivalent atom-true mode coupling constants. The quasimode theory enables cases of multiple excitation of the reservoir to now be treated via Markovian master equations for the atom-discrete quasimode system. Applications of the theory to one, two, and many discrete quasimodes are made. For a simple photonic band-gap model, where the reservoir structure is associated with the true mode density rather than the coupling constants, the single quantum excitation case appears to be equivalent to a case with two discrete quasimodes.
Resumo:
Near-Resonant Holographic Interferometry is a powerful technique which extends the established advantages of conventional holographic interferometry by allowing a species-specific number density to be determined. It has been tested in the harsh flow conditions generated in a high enthalpy facility yielding information about the shock shape on a cylindrical body and on the distribution of a trace species seeded into the flow.
Resumo:
Purpose: The aims of this randomized controlled trial were to determine whether there were differences in the disease-free survival (DFS) and toxicity between conventional radiotherapy (CRT) and a continuous 3 week accelerated radiotherapy regimen (ART) in stage III and IV squamous cell carcinoma of the oral cavity, oropharynx, larynx and hypopharynx. Patients and methods: Patients from 14 centres throughout Australia and New Zealand were randomly assigned to either CRT, using a single 2 Gy/day to a dose of 70 Gy in 35 fractions in 49 days or to ART, using 1.8 Gy twice a day to a dose of 59.4 Gy in 33 fractions in 24 days. Treatment allocation was stratified for site and stage. The accrual began in 1991 and the trial was closed in 1998 when the target of 350 patients was reached. Results: The median potential follow-up time was 53 months (range, 14-101). The DFS at 5 years was 41% (95% CI, 33-50%) for ART and 35% (95% CI, 27-43%) for CRT (P = 0.323) and the hazard ratio was 0.87 in favour of ART (95% CI, 0.66-1.15). The 5-year disease-specific survival rates were 40% for CRT and 46% for ART (P = 0.398) and the loco-regional control was 47% for CRT vs. 52% for ART (P = 0.300). The respective hazard ratios were 0.88 (95% CI, 0.65-1.2) and 0.85 (0.62-1.16), favouring the accelerated arm. In the ART arm, confluent mucositis was more severe (94 vs. 71%; P < 0.001) and peaked about 3 weeks earlier than in the CRT arm, but healing appeared complete in all cases. There were statistically significant reductions in the probability of grade 2 or greater late soft tissue effects over time in the ART arm (P < 0.05), except for the mucous membrane where late effects were similar in both arms. Conclusions: Differences in DFS, disease-specific survival and loco-regional control have not been demonstrated. ART resulted in more acute mucosal toxicity, but this did not result in greater prolongation of the treatment time compared with the CRT arm. There were less late effects in the ART arm, with the exception of late mucosal effects. This trial has confirmed that tumour cell repopulation occurs during conventionally fractionated radiotherapy for head and neck cancer. However, it has also provided additional evidence that overall improvements in the therapeutic ratio using accelerated fractionation strategies are seriously constrained by the need to limit total doses to levels that do not exceed acute mucosal tolerance. The accelerated schedule tested has been shown in this trial to be an acceptable alternative to conventionally fractionated irradiation to 70 Gy. (C) 2001 Elsevier Science Ireland Ltd. All rights reserved.