165 resultados para Correlation Nmr-spectroscopy
Resumo:
Malondialdehyde and acetaldehyde react together with proteins and form hybrid protein conjugates designated as MAA adducts, which have been detected in livers of ethanol-fed animals. Our previous studies have shown that MAA adducts are comprised of two distinct products. One adduct is composed of two molecules of malondialdehyde and one molecule of acetaldehyde and was identified as the 4-methpl-1,4-dihydropyridine-3,5-dicarbaldehyde derivative of an amino group (MHHDC adduct). The other adduct is a 1:1 adduct of malondialdehyde and acetaldehyde and was identified as the 2-formyl-3-(alkylamino)butanal derivative of an amino group (FAAB adduct). In this study, information on the mechanism of MAA adduct formation was obtained, focusing on whether the FAAB adduct serves as a precursor for the MDHDC adduct. Upon the basis of chemical analysis and NMR spectroscopy, two initial reaction steps appear to be a prerequisite for MDHDC formation. One step involves the reaction of one molecule of malondialdehyde and one of acetaldehyde with an amino group of a protein to form the FAAB product, while the other step involves the generation of a malondialdehyde-enamine. It appears that generation of the MDHDC adduct requires the FAAB moiety to be transferred to the nitrogen of the MDA-enamine. For efficient reaction of FAAB with the enamine to take place, additional experiments indicated that these two intermediates likely must be in positions on the protein of close proximity to each other. Further studies showed that the incubation of liver proteins from ethanol-fed rats with MDA resulted in a marked generation of MDHDC adducts, indicating the presence of a pool of FAAB adducts in the liver of ethanol-fed animals. Overall, these findings show that MDHDC-protein adduct formation occurs via the reaction of the FAAB moiety with a malondialdehyde-enamine, and further suggest that a similar mechanism may be operative in vivo in the liver during prolonged ethanol consumption.
Resumo:
The three Australian-endemic species comprising the genus Aresehougia have been examined to determine the structure of their nonfibrillar wall components. The polysaccharide extracted from the most widely distributed species, A. congesta (Turner) J. Agardh, was shown by compositional analyses, Fourier transform infrared (FTIR) spectroscopy, linkage analysis, and C-13-NMR spectroscopy to be a carrageenan composed predominantly of the repeating disaccharides 6'-O-methylcarrabiose 2,4'-disulfate, carrabiose 2,4-disulfate (the repeating unit of L-carrageenan), 4',6'-O-(1-carboxyethylidene)carrabiose 2-sulfate, and 6'-O-methylcarrabiose 2-sulfate. The carrageenan also contained small amounts of 4-linked Galp residues, some bearing methyl ether substitution at O-3 and some possibly bearing sulfate ester and/or glycosyl substitutions at O-3. The A. congesta carrageenan had unique rheological properties, its gels having some similarities to those of commercial iota -carrageenan but with the viscosity of commercial lambda -carrageenan. Polysaccharides from A. ligulata Harvey ex J. Agardh and A. stuartii Harvey were shown by constituent sugar and FTIR analyses to be sulfated galactans rich in mono-O-methylgalactose. The carrageenan structures of Areschougia spp. were consistent with those of the genera Rhabdonia, Erythroclonium, and Austroclonium, the other genera constituting the family Areschougiaceae.
Resumo:
Alpha-Conotoxins are small disulfide rich peptides from the venoms of marine cone snails. They target specific nicotinic acetylcholine receptor (nAChR) subtypes with high affinity and potency and are therefore valuable as neurophamacological probes and potential drug leads. This article gives a general overview of the chemical and biological features of alpha -conotoxins, including their pharmacology, binding interactions and structure. A detailed analysis of recently reported three-dimensional structures from members of different subfamilies of the alpha -conotoxins, including those with 3/5, 4/3, 4/6 and 4.7 spacings of their two intracysteine loops is given. The structures are generally well defined and represent useful frameworks for the display of amino acid residues to target molecules.
Resumo:
The three-dimensional solution structure of BSTI, a trypsin inhibitor from the European frog Bombina bombina, has been solved using H-1 NMR spectroscopy. The 60 amino acid protein contains five disulfide bonds, which were unambiguously determined to be Cvs (4-38), Cys (13-34), Cys (17-30), Cys (21-60), and Cys (40-54) by experimental restraints and subsequent structure calculations. The main elements of secondary structure are four beta -strands, arranged as two small antiparallel beta -sheets, The overall fold of BSTI is disk shaped and is characterized by the lack of a hydrophobic core. The presumed active site is located on a loop comprising residues 21-34, which is a relatively disordered region similar to that seen in many other protease inhibitors. However, the overall fold is different to other known protease inhibitors with the exception of a small family of inhibitors isolated from nematodes of the family Ascaris and recently also from the haemolymph of Apis mellifera. BSTI may thus be classified as a new member of this recently discovered family of protease inhibitors.
Resumo:
A two-domain portion of the proteinase inhibitor precursor from Nicotiana alata (NaProPI) has been expressed and its structure determined by NMR spectroscopy. NaProPI contains six almost identical 53 amino acid repeats that fold into six highly similar domains; however, the sequence repeats do nut coincide with the structural domains. Five of the structural domains comprise the C-terminal portion of one repeat and the N-terminal portion of the next. The sixth domain contains the C-terminal portion of the sixth repeat and the N-terminal portion of the first repeat. Disulphide bonds link these C and N-terminal fragments to generate the clasped-bracelet fold of NaProPI. The three-dimensional structure of NaProPI is not known, but it is conceivable that adjacent domains in NaProPI interact to generate the circular bracelet with the N and C termini in close enough proximity to facilitate formation of the disulphide bonds that form the clasp The expressed protein, examined in the current study, comprises residues 25-135 of NaProPI and encompasses the first two contiguous structural domains, namely the chymotrypsin inhibitor C1 and the trypsin inhibitor T1, joined by a five-residue linker, and is referred to as C1-T1. The tertiary structure of each domain in C1-T1 is identical to that found in the isolated inhibitors. However, no nuclear Overhauser effect contacts are observed between the two domains and the five-residue linker adopts an extended conformation. The absence of interactions between the domains indicates that adjacent domains do not specifically interact to drive the circularisation of NaProPI. These results are in agreement with recent data which describe similar PI precursors from other members of the Solanaceae having two, three, or four repeats. The lack of strong interdomain association is likely to be important for the function of individual inhibitors by ensuring that there is no masking of reactive sites upon release from the precursor. (C) 2001 Academic Press.
Resumo:
Motion of chains of poly(ethylene oxide) within the interlayer spacing of 2:1 phyllosilicate/montmorillonite was studied with H-1 and C-13 NMR spectroscopy. Measurements of the H-1 NMR line widths and relaxation times across a large temperature range were used to determine the effect of bulk thermal transitions on polymer chain motion within the nanocomposites. The results were consistent with previous reports of low apparent activation energies of motion. Details of the frequency and geometry of motion were obtained from a comparison of the C-13 cross-polarity/magic-angle spinning spectra and relaxation times of the nanocomposite with those of the pure polymer. (C) 2001 John Wiley & Sons, Inc.
Resumo:
Phenylalanine hydroxylase (PAH) is activated by its substrate phenylalanine, and through phosphorylation by cAMP-dependent protein kinase at Ser 16 in the N-terminal autoregulatory sequence of the enzyme. The crystal structures of phosphorylated and unphosphorylated forms of the enzyme showed that, in the absence of phenylalanine, in both cases the N-terminal 18 residues including the phosphorylation site contained no interpretable electron density. We used nuclear magnetic resonance (NMR) spectroscopy to characterize this N-terminal region of the molecule in different stages of the regulatory pathway. A number of sharp resonances are observed in PAH with an intact N-terminal region, but no sharp resonances are present in a truncation mutant lacking the N-terminal 29 residues. The N-terminal sequence therefore represents a mobile flexible region of the molecule. The resonances become weaker after the addition of phenylalanine, indicating a loss of mobility. The peptides corresponding to residues 2-20 of PAH have different structural characteristics in the phosphorylated and unphosphorylated forms, with the former showing increased secondary structure. Our results support the model whereby upon phenylalanine binding, the mobile N-terminal 18 residues of PAH associate with the folded core of the molecule; phosphorylation may facilitate this interaction.
Resumo:
A series of crown ether appended macrocyclic amines has been prepared comprising benzo-12-crown-4, benzo-15-crown-5, or benzo-18-crown-6 attached to a diamino-substituted cyclam. The Co-III complexes of these three receptors have been prepared and characterized spectroscopically and structurally. Crystal structures of each receptor in complex with an alkali metal ion and structures of the benzo-12-crown-4 and benzo-15-crown-5-receptors without guest ions are reported. 2D NMR and molecular mechanics modeling have been used to examine conformational variations upon guest ion complexation. Addition of cations to these receptors results in an appreciable anodic shift in the Co-III:II 11 redox potential, even in aqueous solution, but little cation selectivity is observed. Evidence for complex formation has been corroborated by Na-23 and Li-7 NMR spectroscopy and electrospray mass spectrometry.
Resumo:
The unusual chiral heterocyclic systems, trioxabicyclo[3.3.1]nona-3,7-dienes (bridged bisdioxines), are incorporated as novel spacer molecules into macrocyclic polyether ring systems of various sizes (8, 9 as well as 11-15) by cyclocondensation reaction of the! bisacid chloride 4b or bisesters 6,7 and 10, with several ethylene glycols. The 2:2 macrocycles 12-14 are obtained in approximately 50:50 mixtures of diastereomers. These conclusions are mainly based on HPLC data presented in Table I as well as X-ray analyses of (1R,5R)-8c (space group Pbca, a = 10.163(3) Angstrom, b = 18.999(4) Angstrom, c = 36.187(10) Angstrom, V = 6987(3) Angstrom(3), Z = 8, d(calc) = 1.218 g cm(-3), 6974 reflections, R = 0.0553.), mesolrac-11 (space group P (1) over bar, a = 10.472(5) Angstrom, b = 16.390(5) Angstrom, c = 17.211(5) Angstrom, alpha = 98.69(2)degrees, beta = 93.04(2)degrees, gamma = 98.52(2)degrees, V = 2879.3(18) Angstrom(3), Z = 2, d(calc) = 1.173 g cm(-3), 11,162 reflections, R = 0.0945) and meso-12 (space group P2(1)/c, a = 9.927(2), b = 18.166(3), c = 17.820(3) Angstrom, beta = 96.590(10)degrees, V = 3192.3(10)Angstrom(3), Z = 4, D-c = 1.109 g cm(-3), 3490 reflections, R = 0.0646). The 1:1 macrocycles 8b,c are also formed by intramolecular transesterification of the open-chain bisesters 7b,c and their formation is favored by the use of metal ions as templates. The bridged bisdioxine moieties in 8b and 12 are converted into the corresponding chiral tetra-oxaadamantane spacers to afford macrocycles 16 and 17. Preliminary metal ion complexation studies with selected species (8c, 11-14) were also performed.
Resumo:
The bulk free radical copolymerization of 2-hydroxyethyl methacrylate (HEMA) with N-vinyl-2-pyrrolidone (VP) was carried out to low conversions at 50 degreesC, using benzoyl peroxide (BPO) as initiator. The compositions of the copolymers; were determined using C-13 NMR spectroscopy. The conversion of monomers to polymers was studied using FT-NIR spectroscopy in order to predict the extent of conversion of monomer to polymer. From model fits to the composition data, a statistical F-test revealed that die penultimate model describes die copolymerization better than die terminal model. Reactivity ratios were calculated by using a non-linear least squares analysis (NLLS) and r(H) = 8.18 and r(V) = 0.097 were found to be the best fit values of the reactivity ratios for the terminal model and r(HH) = 12.0, r(VH) = 2.20, r(VV) = 0.12 and r(HV) = 0.03 for the penultimate model. Predictions were made for changes in compositions as a function of conversion based upon the terminal and penultimate models.
Resumo:
C,C-Dicyanoketenimines 10a-c were generated by flash vacuum thermolysis of ketene NS-acetals 9a-c or by thermal or photochemical decomposition of alpha-azido-,beta-cyanocinnamonitrile 11. In the latter reaction, 3,3-dicyano-2-phenyl-1-azirine 12 is also formed. IR spectroscopy of the keteniminines isolated in Ar matrixes or as neat films, NMR spectroscopy of 10c, and theoretical calculations (B3LYP/6-31G*) demonstrate that these ketenimines have variable geometry, being essentially linear along the CCN-R framework in polar media (neat films and solution), but in the gas phase or Ar matrix they are bent, as is usual for ketenimines. Experiments and calculations agree that a single CN substituent as in 13 is not enough to enforce linearity, and sulfonyl groups are less effective that cyano groups in causing linearity. C,C-Bis(methylsulfonyl)ketenimines 4-5 and a C-cyano-C-(methylsulfonyl)ketenimine 15 are not linear. The compound p-O2NC6H4N=C= C(COOMe)2 previously reported in the literature is probably somewhat linearized along the CCNR moiety. A computational survey (B3LYP/6-31G*) of the inversion barrier at nitrogen indicates that electronegative C-substituents dramatically lower the barrier; this is also true of N-acyl substituents. Increasing polarity causes lower barriers. Although N-alkylbis(methylsulfonyl)ketenimines are not calculated to be linear, the barriers are so low that crystal lattice forces can induce planarity in N-methylbis(methylsulfonyl)ketenimine 3.
Resumo:
Within the skeletal muscle cell at the onset of muscular contraction, phosphocreatine (PCr) represents the most immediate reserve for the rephosphorylation of adenosine triphosphate (ATP). As a result, its concentration can be reduced to less than 30% of resting levels during intense exercise. As a fall in the level of PCr appears to adversely affect muscle contraction, and therefore power output in a subsequent bout, maximising the rate of PCr resynthesis during a brief recovery period will be of benefit to an athlete involved in activities which demand intermittent exercise. Although this resynthesis process simply involves the rephosphorylation of creatine by aerobically produced ATP (with the release of protons), it has both a fast and slow component, each proceeding at a rate that is controlled by different components of the creatine kinase equilibrium. The initial fast phase appears to proceed at a rate independent of muscle pH. Instead, its rate appears to be controlled by adenosine diphosphate (ADP) levels; either directly through its free cytosolic concentration, or indirectly, through its effect on the free energy of ATP hydrolysis. Once this fast phase of recovery is complete, there is a secondary slower phase that appears almost certainly rate-dependant on the return of the muscle cell to homeostatic intracellular pH. Given the importance of oxidative phosphorylation in this resynthesis process, those individuals with an elevated aerobic power should be able to resynthesise PCr at a more rapid rate than their sedentary counterparts. However, results from studies that have used phosphorus nuclear magnetic resonance (P-31-NMR) spectroscopy, have been somewhat inconsistent with respect to the relationship between aerobic power and PCr recovery following intense exercise. Because of the methodological constraints that appear to have limited a number of these studies, further research in this area is warranted.
Resumo:
Circular disulfide-rich polypeptides were unknown a decade ago but over recent years a large family of such molecules has been discovered, which we now refer to as the cyclotides. They are typically about 30 amino acids in size, contain an N- to C-cyclised backbone and incorporate three disulfide bonds arranged in a cystine knot motif. In this motif, an embedded ring in the structure formed by two disulfide bonds and their connecting backbone segments is penetrated by the third disulfide bond. The combination of this knotted and strongly braced structure with a circular backbone renders the cyclotides impervious to enzymatic breakdown and makes them exceptionally stable. This article describes the discovery of the cyclotides in plants from the Rubiaceae and Violaceae families, their chemical synthesis, folding, structural characterisation, and biosynthetic origin. The cyclotides have a diverse range of biological applications, ranging from uterotonic action, to anti-HIV and neurotensin antagonism. Certain plants from which they are derived have a history of uses in native medicine, with activity being observed after oral ingestion of a tea made from the plants. This suggests the possibility that the cyclotides may be orally bioavailable. They therefore have a range of potential applications as a stable peptide framework.
Resumo:
The synthesis and characterization of high-quality mesoporous silicoaluminophosphates (SAPOs) with a hexagonally arranged pore structure and a good thermal stability are described. The influence of some important synthesis parameters including temperature, time, and Si content in the synthesis gel was examined. The local environments of Al, P, and Si were investigated using MAS NMR spectroscopy. The acidity of the mesoporous SAPOs was studied and compared with those of aluminosilicate MCM-41 and SAPO-5. Results show that both the synthesis temperature and time have a significant impact on the formation of mesoporous SAPOs, whereas the presence of Si in the synthesis gel has a direct influence on the structure type and the quality of the resulting mesoporous SAPO materials. High-quality mesoporous SAPOs can be synthesized from the synthesis gels with Si/Al ratio smaller than 0.5 in the presence of cationic surfactants in a weakly basic aqueous solution. The mesoporous SAPO materials show interesting acidity properties, possessing both strong and mild sites. (C) 2002 Elsevier Science Inc. All rights reserved.
Resumo:
alpha-Conotoxin AuIB and a disulfide bond variant of AuIB have been synthesized to determine the role of disulfide bond connectivity on structure and activity. Both of these peptides contain the 15 amino acid sequence GCCSYPPCFATNPDC, with the globular (native) isomer having the disulfide connectivity Cys(2-8 and 3-15) and the ribbon isomer having the disulfide connectivity Cys(2-15 and 3-8). The solution structures of the peptides were determined by NAIR spectroscopy, and their ability to block the nicotinic acetylcholine receptors on dissociated neurons of the rat parasympathetic ganglia was examined. The ribbon disulfide isomer, although having a less well defined structure, is surprisingly found to have approximately 10 times greater potency than the native peptide. To our knowledge this is the first demonstration of a non-native disulfide bond isomer of a conotoxin exhibiting greater biological activity than the native isomer.