149 resultados para Computer Science, theory and methods
Resumo:
The research literature on metalieuristic and evolutionary computation has proposed a large number of algorithms for the solution of challenging real-world optimization problems. It is often not possible to study theoretically the performance of these algorithms unless significant assumptions are made on either the algorithm itself or the problems to which it is applied, or both. As a consequence, metalieuristics are typically evaluated empirically using a set of test problems. Unfortunately, relatively little attention has been given to the development of methodologies and tools for the large-scale empirical evaluation and/or comparison of metaheuristics. In this paper, we propose a landscape (test-problem) generator that can be used to generate optimization problem instances for continuous, bound-constrained optimization problems. The landscape generator is parameterized by a small number of parameters, and the values of these parameters have a direct and intuitive interpretation in terms of the geometric features of the landscapes that they produce. An experimental space is defined over algorithms and problems, via a tuple of parameters for any specified algorithm and problem class (here determined by the landscape generator). An experiment is then clearly specified as a point in this space, in a way that is analogous to other areas of experimental algorithmics, and more generally in experimental design. Experimental results are presented, demonstrating the use of the landscape generator. In particular, we analyze some simple, continuous estimation of distribution algorithms, and gain new insights into the behavior of these algorithms using the landscape generator.
Resumo:
What is the minimal size quantum circuit required to exactly implement a specified n-qubit unitary operation, U, without the use of ancilla qubits? We show that a lower bound on the minimal size is provided by the length of the minimal geodesic between U and the identity, I, where length is defined by a suitable Finsler metric on the manifold SU(2(n)). The geodesic curves on these manifolds have the striking property that once an initial position and velocity are set, the remainder of the geodesic is completely determined by a second order differential equation known as the geodesic equation. This is in contrast with the usual case in circuit design, either classical or quantum, where being given part of an optimal circuit does not obviously assist in the design of the rest of the circuit. Geodesic analysis thus offers a potentially powerful approach to the problem of proving quantum circuit lower bounds. In this paper we construct several Finsler metrics whose minimal length geodesics provide lower bounds on quantum circuit size. For each Finsler metric we give a procedure to compute the corresponding geodesic equation. We also construct a large class of solutions to the geodesic equation, which we call Pauli geodesics, since they arise from isometries generated by the Pauli group. For any unitary U diagonal in the computational basis, we show that: (a) provided the minimal length geodesic is unique, it must be a Pauli geodesic; (b) finding the length of the minimal Pauli geodesic passing from I to U is equivalent to solving an exponential size instance of the closest vector in a lattice problem (CVP); and (c) all but a doubly exponentially small fraction of such unitaries have minimal Pauli geodesics of exponential length.
Resumo:
In this paper, we present ICICLE (Image ChainNet and Incremental Clustering Engine), a prototype system that we have developed to efficiently and effectively retrieve WWW images based on image semantics. ICICLE has two distinguishing features. First, it employs a novel image representation model called Weight ChainNet to capture the semantics of the image content. A new formula, called list space model, for computing semantic similarities is also introduced. Second, to speed up retrieval, ICICLE employs an incremental clustering mechanism, ICC (Incremental Clustering on ChainNet), to cluster images with similar semantics into the same partition. Each cluster has a summary representative and all clusters' representatives are further summarized into a balanced and full binary tree structure. We conducted an extensive performance study to evaluate ICICLE. Compared with some recently proposed methods, our results show that ICICLE provides better recall and precision. Our clustering technique ICC facilitates speedy retrieval of images without sacrificing recall and precision significantly.
Resumo:
Machine learning techniques have been recognized as powerful tools for learning from data. One of the most popular learning techniques, the Back-Propagation (BP) Artificial Neural Networks, can be used as a computer model to predict peptides binding to the Human Leukocyte Antigens (HLA). The major advantage of computational screening is that it reduces the number of wet-lab experiments that need to be performed, significantly reducing the cost and time. A recently developed method, Extreme Learning Machine (ELM), which has superior properties over BP has been investigated to accomplish such tasks. In our work, we found that the ELM is as good as, if not better than, the BP in term of time complexity, accuracy deviations across experiments, and most importantly - prevention from over-fitting for prediction of peptide binding to HLA.
Resumo:
Document classification is a supervised machine learning process, where predefined category labels are assigned to documents based on the hypothesis derived from training set of labelled documents. Documents cannot be directly interpreted by a computer system unless they have been modelled as a collection of computable features. Rogati and Yang [M. Rogati and Y. Yang, Resource selection for domain-specific cross-lingual IR, in SIGIR 2004: Proceedings of the 27th annual international conference on Research and Development in Information Retrieval, ACM Press, Sheffied: United Kingdom, pp. 154-161.] pointed out that the effectiveness of document classification system may vary in different domains. This implies that the quality of document model contributes to the effectiveness of document classification. Conventionally, model evaluation is accomplished by comparing the effectiveness scores of classifiers on model candidates. However, this kind of evaluation methods may encounter either under-fitting or over-fitting problems, because the effectiveness scores are restricted by the learning capacities of classifiers. We propose a model fitness evaluation method to determine whether a model is sufficient to distinguish positive and negative instances while still competent to provide satisfactory effectiveness with a small feature subset. Our experiments demonstrated how the fitness of models are assessed. The results of our work contribute to the researches of feature selection, dimensionality reduction and document classification.
Resumo:
The parameterless self-organizing map (PLSOM) is a new neural network algorithm based on the self-organizing map (SOM). It eliminates the need for a learning rate and annealing schemes for learning rate and neighborhood size. We discuss the relative performance of the PLSOM and the SOM and demonstrate some tasks in which the SOM fails but the PLSOM performs satisfactory. Finally we discuss some example applications of the PLSOM and present a proof of ordering under certain limited conditions.
Resumo:
It is shown that in some cases it is possible to reconstruct a block design D uniquely from incomplete knowledge of a minimal defining set for D. This surprising result has implications for the use of minimal defining sets in secret sharing schemes.
Resumo:
Defeasible reasoning is a simple but efficient approach to nonmonotonic reasoning that has recently attracted considerable interest and that has found various applications. Defeasible logic and its variants are an important family of defeasible reasoning methods. So far no relationship has been established between defeasible logic and mainstream nonmonotonic reasoning approaches. In this paper we establish close links to known semantics of logic programs. In particular, we give a translation of a defeasible theory D into a meta-program P(D). We show that under a condition of decisiveness, the defeasible consequences of D correspond exactly to the sceptical conclusions of P(D) under the stable model semantics. Without decisiveness, the result holds only in one direction (all defeasible consequences of D are included in all stable models of P(D)). If we wish a complete embedding for the general case, we need to use the Kunen semantics of P(D), instead.
Resumo:
In this letter, we propose a class of self-stabilizing learning algorithms for minor component analysis (MCA), which includes a few well-known MCA learning algorithms. Self-stabilizing means that the sign of the weight vector length change is independent of the presented input vector. For these algorithms, rigorous global convergence proof is given and the convergence rate is also discussed. By combining the positive properties of these algorithms, a new learning algorithm is proposed which can improve the performance. Simulations are employed to confirm our theoretical results.
Resumo:
Experiential learning approaches such as role-play have been found to be valuable methods of bridging the divide between academic knowledge and practical skills, a problem often cited in tourism and hospitality management education. Such approaches have been found to contribute towards deeper learning by enhancing students' interest, motivation, participation, knowledge and skill development. This paper reports on the implementation of an experiential learning approach designed to encourage and facilitate deeper learning approaches, with the contributing aims of providing students with a more interesting learning experience and a broader set of skills for future employment.
Resumo:
We investigate the problem of teleporting an unknown qubit state to a recipient via a channel of 2L qubits. In this procedure a protocol is employed whereby L Bell state measurements are made and information based on these measurements is sent via a classical channel to the recipient. Upon receiving this information the recipient determines a local gate which is used to recover the original state. We find that the 2(2L)-dimensional Hilbert space of states available for the channel admits a decomposition into four subspaces. Every state within a given subspace is a perfect channel, and each sequence of Bell measurements projects 2L qubits of the system into one of the four subspaces. As a result, only two bits of classical information need be sent to the recipient for them to determine the gate. We note some connections between these four subspaces and ground states of many-body Hamiltonian systems, and discuss the implications of these results towards understanding entanglement in multi-qubit systems.
Resumo:
In the context of a hostile funding environment, universities are increasingly asked to justify their output in narrowly defined economic terms, and this can be difficult in Humanities or Arts faculties where productivity is rarely reducible to a simple financial indicator. This can lead to a number of immediate consequences that I have no need to rehearse here, but can also result in some interesting tensions within the academic community itself. First is that which has become known as the ‘Science Wars’: the increasingly acrimonious exchanges between scientists and scientific academics and cultural critics or theorists about who has the right to describe the world. Much has already been said—and much remains to be said—about this issue, but it is not my intention to discuss it here. Rather, I will look at a second area of contestation: the incorporation of scientific theory into literary or cultural criticism. Much of this work comes from a genuine commitment to interdisciplinarity, and an appreciation of insights that a fresh perspective can bring to a familiar object. However, some can be seen as cynical attempts to lend literary studies the sort of empirical legitimacy of the sciences. In particular, I want to look at a number of critics who have applied information theory to the literary work. In this paper, I will examine several instances of this sort of criticism, and then, through an analysis of a novel by American author Richard Powers, Three Farmers on Their Way to a Dance, show how this sort of criticism merely reduces the meaningful analysis of a complex literary text.
Resumo:
We introduce a genetic programming (GP) approach for evolving genetic networks that demonstrate desired dynamics when simulated as a discrete stochastic process. Our representation of genetic networks is based on a biochemical reaction model including key elements such as transcription, translation and post-translational modifications. The stochastic, reaction-based GP system is similar but not identical with algorithmic chemistries. We evolved genetic networks with noisy oscillatory dynamics. The results show the practicality of evolving particular dynamics in gene regulatory networks when modelled with intrinsic noise.
Resumo:
We present some techniques to obtain smooth derivations of concurrent programs that address both safety and progress in a formal manner. Our techniques form an extension to the calculational method of Feijen and van Casteren using a UNITY style progress logic. We stress the role of stable guards, and we illustrate the derivation techniques on some examples in which progress plays an essential role.
Resumo:
In empirical studies of Evolutionary Algorithms, it is usually desirable to evaluate and compare algorithms using as many different parameter settings and test problems as possible, in border to have a clear and detailed picture of their performance. Unfortunately, the total number of experiments required may be very large, which often makes such research work computationally prohibitive. In this paper, the application of a statistical method called racing is proposed as a general-purpose tool to reduce the computational requirements of large-scale experimental studies in evolutionary algorithms. Experimental results are presented that show that racing typically requires only a small fraction of the cost of an exhaustive experimental study.