155 resultados para Carbothermal reduction process
Resumo:
A social identity theory of leadership is described that views leadership as a group process generated by social categorization and prototype-based depersonalization processes associated with social identity. Group identification, as self-categorization, constructs an intragroup prototypicality gradient that invests the most prototypical member with the appearance of having influence; the appearance arises because members cognitively and behaviorally conform to the prototype. The appearance of influence becomes a reality through depersonalized social attraction processes that make followers agree and comply with the leader's ideas and suggestions. Consensual social attraction also imbues the leader with apparent status and creates a status-based structural differentiation within the group into leader(s) and followers, which has characteristics of unequal status intergroup relations. In addition, a fundamental attribution process constructs a charismatic leadership personality for the leader, which further empowers the leader and sharpens the leader-follower status differential. Empirical support for the theory is reviewed and a range of implications discussed, including intergroup dimensions, uncertainty reduction and extremism, power, and pitfalls of prototype-based leadership.
Resumo:
Previous genetic analyses of psychosis proneness have been limited by their small sample size. For the purposes of large-scale screening, a 12-item questionnaire was developed through a two-stage process of reduction from the full Chapman and Chapman scales. 3685 individuals (including 1438 complete twin pairs) aged 18–25 years and enrolled in the volunteer Australian Twin Registry returned a mail questionnaire which included this psychosis proneness scale and the Eysenck Personality Questionnaire. Despite the brevity of the questionnaire, item and factor analysis identified four unambiguous and essentially uncorrelated scales. There were (1) Perceptual Aberration – Magical Ideation; (2) Hypomania – Impulsivity/Nonconformity; (3) Social Anhedonia and (4) Physical Anhedonia. Model-fitting analyses showed additive genetic and specific environmental factors were sufficient for three of the four scales, with the Social Anhedonia scale requiring also a parameter for genetic dominance. There was no evidence for the previously hypothesised sex differences in the genetic determination of psychosis-proneness. The potential value of multivariate genetic analysis to examine the relationship between these four scales and dimensions of personality is discussed. The growing body of longitudinal evidence on psychosis-proneness suggests the value of incorporating this brief measure into developmental twin studies.
Resumo:
This work studied the structure-hepatic disposition relationships for cationic drugs of varying lipophilicity using a single-pass, in situ rat liver preparation. The lipophilicity among the cationic drugs studied in this work is in the following order: diltiazem. propranolol. labetalol. prazosin. antipyrine. atenolol. Parameters characterizing the hepatic distribution and elimination kinetics of the drugs were estimated using the multiple indicator dilution method. The kinetic model used to describe drug transport (the two-phase stochastic model) integrated cytoplasmic binding kinetics and belongs to the class of barrier-limited and space-distributed liver models. Hepatic extraction ratio (E) (0.30-0.92) increased with lipophilicity. The intracellular binding rate constant (k(on)) and the equilibrium amount ratios characterizing the slowly and rapidly equilibrating binding sites (K-S and K-R) increase with the lipophilicity of drug (k(on) : 0.05-0.35 s(-1); K-S : 0.61-16.67; K-R : 0.36-0.95), whereas the intracellular unbinding rate constant (k(off)) decreases with the lipophilicity of drug (0.081-0.021 s(-1)). The partition ratio of influx (k(in)) and efflux rate constant (k(out)), k(in)/k(out), increases with increasing pK(a) value of the drug [from 1.72 for antipyrine (pK(a) = 1.45) to 9.76 for propranolol (pK(a) = 9.45)], the differences in k(in/kout) for the different drugs mainly arising from ion trapping in the mitochondria and lysosomes. The value of intrinsic elimination clearance (CLint), permeation clearance (CLpT), and permeability-surface area product (PS) all increase with the lipophilicity of drug [CLint (ml . min(-1) . g(-1) of liver): 10.08-67.41; CLpT (ml . min(-1) . g(-1) of liver): 10.80-5.35; PS (ml . min(-1) . g(-1) of liver): 14.59-90.54]. It is concluded that cationic drug kinetics in the liver can be modeled using models that integrate the presence of cytoplasmic binding, a hepatocyte barrier, and a vascular transit density function.