119 resultados para Ca1 Pyramidal Neurons
Resumo:
This study forms part of an ongoing investigation of pyramidal cell structure in the cingulate cortex of primates. Recently we have demonstrated that layer III pyramidal cells in the anterior cingulate gyrus are considerably larger, more branched and more spinous than those in the posterior cingulate gyrus (areas 24 and 23, respectively) in the macaque and vervet monkeys. Moreover, the extent of the interareal difference in specialization in pyramidal cell structure differed between the two species. These data suggest that pyramidal cell circuitry may have evolved differently in these closely related species. Presently there are too few data to speculate on what is selecting for this specialization in structure. Here we extend the basis for comparison by studying pyramidal cell structure in cingulate gyrus of the Chacma baboon (Papio ursinus). Methodology used here is the same as that for our previous studies: intracellular injection of Lucifer Yellow in flat-mounted cortical slices. We found that pyramidal cells in anterior cingulate gyrus (area 24) were more branched and more spinous than those in posterior cingulate gyrus (area 23). Moreover, the complexity in pyramidal cell structure in both the anterior and posterior cingulate gyrus of the baboon differed to that in the corresponding regions in either the macaque or vervet monkeys. (C) 2005 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The systematic study of pyramidal cell structure has revealed new insights into specialization of the phenotype in the primate cerebral cortex. Regional specialization in the neuronal phenotype may influence patterns of connectivity and the computational abilities of the circuits they compose. The comparative study of pyramidal cells in homologous cortical areas is beginning to yield data on the evolution and development of such specialized circuitry in the primate cerebral cortex. Recently, we have focused our efforts on sensory-motor cortex. Based on our intracellular injection methodology, we have demonstrated a progressive increase in the size of, the branching structure in, and the spine density of the basal dendritic trees of pyramidal cells through somatosensory areas 3b, 1, 2, 5, and 7 in the macaque and vervet monkeys. In addition, we have shown that pyramidal cells in premotor area 6 are larger, more branched, and more spinous than those in the primary motor cortex (MI or area 4) in the macaque monkey, vervet monkey, and baboon. Here we expand the basis for comparison by studying the basal dendritic trees of layer III pyramidal cells in these same sensory-motor areas in the chacma baboon. The baboon was selected because it has a larger cerebral cortex than either the macaque or vervet monkeys; motor cortex has expanded disproportionately in these three species; and motor cortex in the baboon reportedly has differentiated to include a new cortical area not present in either the macaque or vervet monkeys. We found, as in monkeys, a progressive increase in the morphological complexity of pyramidal cells through areas 3b, 5, and 7, as well as from area 4 to area 6, suggesting that areal specialization in microcircuitry was likely to be present in a common ancestor of primates. In addition, we found subtle differences in the extent of the interareal differences in pyramidal cell structure between homologous cortical areas in the three species. (c) 2005 Wiley-Liss, Inc.
Resumo:
Cortical pyramidal cells, while having a characteristic morphology, show marked phenotypic variation in primates. Differences have been reported in their size, branching structure and spine density between cortical areas. In particular, there is a systematic increase in the complexity of the structure of pyramidal cells with anterior progression through occipito-temporal cortical visual areas. These differences reflect area-specific specializations in cortical circuitry, which are believed to be important for visual processing. However, it remains unknown as to whether these regional specializations in pyramidal cell structure are restricted to primates. Here we investigated pyramidal cell structure in the visual cortex of the tree shrew, including the primary (V1), second (V2) and temporal dorsal (TD) areas. As in primates, there was a trend for more complex branching structure with anterior progression through visual areas in the tree shrew. However, contrary to the trend reported in primates, cells in the tree shrew tended to become smaller with anterior progression through V1, V2 and TD. In addition, pyramidal cells in V1 of the tree shrew are more than twice as spinous as those in primates. These data suggest that variables that shape the structure of adult cortical pyramidal cells differ among species.
Resumo:
The present study investigated the actions of the polyether marine toxin Pacific ciguatoxin-1 (P-CTX-1) on neuronal excitability in rat dorsal root ganglion (DRG) neurons using patch-clamp recording techniques. Under current-clamp conditions, bath application of 2-20 nM P-CTX-1 caused a rapid, concentration-dependent depolarization of the resting membrane potential in neurons expressing tetrodotoxin (TTX)-sensitive voltage-gated sodium (Na-v,.) channels. This action was completely suppressed by the addition of 200 nM TTX to the external solution, indicating that this effect was mediated through TTX-sensitive Na-v channels. In addition, P-CTX-1 also prolonged action potential and afterhyperpolarization (AHP) duration. In a subpopulation of neurons, P-CTX-1 also produced tonic action potential firing, an effect that was not accompanied by significant oscillation of the resting membrane potential. Conversely, in neurons expressing TTX-resistant Na-v currents, P-CTX-1 failed to alter any parameter of neuronal excitability examined in this study. Under voltage-clamp conditions in rat DRG neurons, P-CTX-1 inhibited both delayed-rectifier and 'A-type' potassium currents in a dose-dependent manner, actions that Occurred in the absence of alterations to the voltage dependence of activation. These actions appear to underlie the prolongation of the action potential and AHP. and contribute to repetitive firing. These data indicate that a block of potassium channels contributes to the increase in neuronal excitability, associated with a modulation of Na-v. channel gating, observed clinically in response to ciguatera poisoning. (c) 2004 Elsevier Inc. All rights reserved.
Resumo:
1 The effects of intravenous (i.v.) anaesthetics on nicotinic acetylcholine receptor (nAChR)-induced transients in intracellular free Ca2+ concentration ([Ca2+](i)) and membrane currents were investigated in neonatal rat intracardiac neurons. 2 In fura-2-loaded neurons, nAChR activation evoked a transient increase in [Ca2+](i), which was inhibited reversibly and selectively by clinically relevant concentrations of thiopental. The half-maximal concentration for thiopental inhibition of nAChR-induced [Ca2+](i) transients was 28 muM, close to the estimated clinical EC50 (clinically relevant (half-maximal) effective concentration) of thiopental. 3 In fura-2-loaded neurons, voltage clamped at -60mV to eliminate any contribution of voltage-gated Ca2+ channels, thiopental (25 muM) simultaneously inhibited nAChR-induced increases in [Ca2+](i) and peak current amplitudes. Thiopental inhibited nAChR-induced peak current amplitudes in dialysed whole-cell recordings by - 40% at - 120, -80 and -40 mV holding potential, indicating that the inhibition is voltage independent. 4 The barbiturate, pentobarbital and the dissociative anaesthetic, ketamine, used at clinical EC50 were also shown to inhibit nAChR-induced increases in [Ca2+](i) by similar to40%. 5 Thiopental (25 muM) did not inhibit caffeine-, muscarine- or ATP-evoked increases in [Ca2+](i), indicating that inhibition of Ca2+ release from internal stores via either ryanodine receptor or inositol-1,4,5-trisphosphate receptor channels is unlikely. 6 Depolarization-activated Ca2+ channel currents were unaffected in the presence of thiopental (25 muM), pentobarbital (50 muM) and ketamine (10 muM). 7 In conclusion, i.v. anaesthetics inhibit nAChR-induced currents and [Ca2+](i) transients in intracardiac neurons by binding to nAChRs and thereby may contribute to changes in heart rate and cardiac output under clinical conditions.
Resumo:
The pyramidal cell phenotype varies quite dramatically in structure among different cortical areas in the primate brain. Comparative studies in visual cortex, in particular, but also in sensorimotor and prefrontal cortex, reveal systematic trends for pyramidal cell specialization in functionally related cortical areas. Moreover, there are systematic differences in the extent of these trends between different primate species. Recently we demonstrated differences in pyramidal cell structure in the cingulate cortex of the macaque monkey; however, in the absence of other comparative data it remains unknown as to whether the neuronal phenotype differs in cingulate cortex between species. Here we extend the basis for comparison by studying the structure of the basal dendritic trees of layer III pyramidal cells in the posterior and anterior cingulate gyrus of the vervet monkey (Brodmann's areas 23 and 24, respectively). Cells were injected with Lucifer Yellow in flat-mounted cortical slices, and processed for a light-stable DAB reaction product. Size, branching pattern, and spine density of basal dendritic arbors were determined, and somal areas measured. As in the macaque monkey, we found that pyramidal cells in anterior cingulate gyrus (area 24) were more branched and more spinous than those in posterior cingulate gyrus (area 23). In addition, the extent of the difference in pyramidal cell structure between these two cortical regions was less in the vervet monkey than in the macaque monkey.
Resumo:
Hyperprolactinaemia during lactation is a consequence of the sucking stimulus and in part due to reduced prolactin (PRL) negative feedback. To date, the mechanisms involved in this diminished sensitivity to PRL feedback are unknown but may involve changes in PRL signal transduction within tuberoinfundibular dopaminergic (TIDA) neurons. Therefore, we investigated signal transducers and activators of transcription (STAT) 5 signaling in the TIDA neurons of lactating rats. Dual-label confocal immunofluorescence studies were used to determine the intracellular distribution of STAT5 within TIDA neurons in the dorsomedial arcuate nucleus. In lactating rats with pups removed for 16 h, injection of ovine PRL significantly (P < 0.05) increased the STAT5 nuclear/cytoplasmic ratio compared with vehicle-treated mothers. In contrast, ovine PRL injection did not increase the STAT5 nuclear/cytoplasmic ratio in lactating mothers with pups, demonstrating that PRL signal transduction through STAT5 is reduced in TIDA neurons in the presence of pups. To investigate possible mechanisms involved in reduced PRL signaling, we examined the expression of suppressors of cytokine signaling (SOCS) proteins. Northern analysis on whole hypothalamus showed that CIS (cytokine-inducible SH2 domain-containing protein), but not SOCS1 or SOCS3, mRNA expression was significantly (P < 0.01) up-regulated in suckled lactating rats. Semiquantitative RT-PCR on arcuate nucleus micropunches also showed up-regulation of CIS transcripts. Immunofluorescence studies demonstrated that CIS is expressed in all TIDA neurons in the dorsomedial arcuate nucleus, and the intensity of CIS staining in these neurons is significantly (P < 0.05) increased in lactating rats with sucking pups. Together, these results support the hypothesis that loss of sensitivity to PRL-negative feedback during lactation is a result of increased CIS expression in TIDA neurons.
Specializations of the granular prefrontal cortex of primates: Implications for cognitive processing
Resumo:
The biological underpinnings of human intelligence remain enigmatic. There remains the greatest confusion and controversy regarding mechanisms that enable humans to conceptualize, plan, and prioritize, and why they are set apart from other animals in their cognitive abilities. Here we demonstrate that the basic neuronal building block of the cerebral cortex, the pyramidal cell, is characterized by marked differences in structure among primate species. Moreover, comparison of the complexity of neuron structure with the size of the cortical area/region in which the cells are located revealed that trends in the granular prefrontal cortex (gPFC) were dramatically different to those in visual cortex. More specifically, pyramidal cells in the gPFC of humans had a disproportionately high number of spines. As neuron structure determines both its biophysical properties and connectivity, differences in the complexity in dendritic structure observed here endow neurons with different computational abilities. Furthermore, cortical circuits composed of neurons with distinguishable morphologies will likely be characterized by different functional capabilities. We propose that 1. circuitry in V1, V2, and gPFC within any given species differs in its functional capabilities and 2. there are dramatic differences in the functional capabilities of gPFC circuitry in different species, which are central to the different cognitive styles of primates. In particular, the highly branched, spinous neurons in the human gPFC may be a key component of human intelligence. (C) 2005 Wiley-Liss, Inc.
Resumo:
GABA-containing interneurons are a diverse population of cells whose primary mode of action in the mature nervous system is inhibition of postsynaptic target neurons. Using paired recordings from parvalbumin-positive interneurons in the basolateral amygdala, we show that, in a subpopulation of interneurons, single action potentials in one interneuron evoke in the postsynaptic interneuron a monosynaptic inhibitory synaptic current, followed by a disynaptic excitatory glutamatergic synaptic current. Interneuron-evoked glutamatergic events were blocked by antagonists of either AMPA/kainate or GABA(A) receptors, and could be seen concurrently in both presynaptic and postsynaptic interneurons. These results show that single action potentials in a GABAergic interneuron can drive glutamatergic principal neurons to threshold, resulting in both feedforward and feedback excitation. In interneuron pairs that both receive glutamatergic inputs after an interneuron spike, electrical coupling and bidirectional GABAergic connections occur with a higher probability relative to other interneuron pairs. We propose that this form of GABAergic excitation provides a means for the reliable and specific recruitment of homogeneous interneuron networks in the basal amygdala.
Resumo:
The effects of substance P (SP) on nicotinic acetylcholine (ACh)-evoked currents were investigated in parasympathetic neurons dissociated from neonatal rat intracardiac ganglia using standard whole cell, perforated patch, and outside-out recording configurations of the patch-clamp technique. Focal application of SP onto the soma reversibly decreased the peak amplitude of the ACh-evoked current with half-maximal inhibition occurring at 45 mu M and complete block at 300 mu M SP. Whole cell current-voltage (I-V) relationships obtained in the absence and presence of SP indicate that the block of ACh-evoked currents by SP is voltage independent. The rate of decay of ACh-evoked currents was increased sixfold in the presence of SP (100 mu M), suggesting that SP may increase the rate of receptor desensitization. SP-induced inhibition of ACh-evoked currents was observed following cell dialysis and in the presence of either 1 mM 8-Br-cAMP, a membrane-permeant cAMP analogue, 5 mu M H-7, a protein kinase C inhibitor, or 2 mM intracellular AMP-PNP, a nonhydrolyzable ATP analogue. These data suggest that a diffusible cytosolic second messenger is unlikely to mediate SP inhibition of neuronal nicotinic ACh receptor (nAChR) channels. Activation of nAChR channels in outside-out membrane patches by either ACh (3 mu M) or cytisine (3 mu M) indicates the presence of at least three distinct conductances (20, 35, and 47 pS) in rat intracardiac neurons. In the presence of 3 mu M SP, the large conductance nAChR channels are preferentially inhibited. The open probabilities of the large conductance classes activated by either ACh or cytisine were reversibly decreased by 10- to 30-fold in the presence of SP. The single-channel conductances were unchanged, and mean apparent channel open times for the large conductance nAChR channels only were slightly decreased by SP. Given that individual parasympathetic neurons of rat intracardiac ganglia express a heterogeneous population of nAChR subunits represented by the different conductance levels, SP appears to preferentially inhibit those combinations of nAChR subunits that form the large conductance nAChR channels. Since ACh is the principal neurotransmitter of extrinsic (vagal) innervation of the mammalian heart, SP may play an important role in modulating autonomic control of the heart.
Resumo:
The effects of vasoactive intestinal polypeptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP27 and PACAP38) on isolated parasympathetic neurons of rat intracardiac and submandibular ganglia were examined under voltage clamp using whole-cell patch-clamp recording techniques. VIP and PACAP (less than or equal to 10 nm) selectively and reversibly increased the affinity of nicotinic acetylcholine receptor channels (nAChRs) for their agonists resulting in a potentiation of acetylcholine (ACh)-evoked whole-cell currents at low agonist concentrations. VIP-induced potentiation was observed with either ACh or nicotine as the cholinergic agonist. The VIP- but not the PACAP-induced potentiation of ACh-evoked currents was inhibited by [Ac-Tyr(1), D-Phe(2)]-GRF 1-29, amide (100 nm), a selective antagonist of VPAC(1) and VPAC(2) receptors; whereas the PACAP38- but not the VIP-induced potentiation was inhibited by 100 nm PACAP6-38, a PAC(1) and VPAC(2) receptor antagonist. The signal transduction pathway mediating VIP- and PACAP-induced potentiation of nicotinic ACh-evoked currents involves a pertussis toxin (PTX)-sensitive G-protein. Intracellular application of 200 mu m GTP gamma S or GDP beta S inhibited VIP-induced potentiation of ACh-evoked whole-cell currents. GTP gamma S alone potentiated ACh- and nicotine-evoked currents and the magnitude of these currents was not further increased by VIP or PACAP. The G-protein subtype modulating the neuronal nAChRs was examined by intracellular dialysis with antibodies directed against alpha(o), alpha(i-1,2), alpha(i-3) or beta G-protein subunits. Only the anti-G alpha(o) and anti-G beta antibodies significantly inhibited the effect of VIP and PACAP on ACh-evoked currents. The potentiation of ACh-evoked currents by VIP and PACAP may be mediated by a membrane-delimited signal transduction cascade involving the PTX-sensitive G(o) protein.