271 resultados para Biological Assessment
Resumo:
Methotrexate is eliminated almost entirely by the kidneys. The risk of methotrexate toxicity is therefore increased in patients with poor renal function, most likely as a result of drug accumulation. Declining renal function with age may thus be an important predictor of toxicity to methotrexate. Up to 60% of all patients who receive methotrexate for rheumatoid arthritis (RA) discontinue taking it because of adverse effects, most of which occur during the first year of therapy. Gastrointestinal complications are the most common adverse effects of methotrexate, but hepatotoxicity, haematological toxicity, pulmonary toxicity, lymphoproliferative disorders and exacerbation of rheumatic nodules have all been reported, Decreased renal function as a result of disease and/or aging appears to be an important determinant of hepatic, lymphoproli ferative and haematological toxicity, Concomitant use of low doses of folic acid has been recommended as an approach to limiting toxicity. Interactions between methotrexate and several nonsteroidal anti-inflammatory drugs have been reported, but they may not be clinically significant. However, caution is advised in the use of such combinations in patients with reduced renal function. More serious toxicities (e.g. pancytopenia) may result when other inhibitors of folate utilisation [e.g. cotrimoxazole (trimethoprim-sulfamethoxazole)] or inhibitors of renal tubular secretion (e.g. probenecid) are combined with methotrexate. Before starting low dose methotrexate therapy in patients with RA, a full blood count, liver function tests, renal function tests and chest radiography should be performed. Blood counts and liver function tests should be repeated at regular intervals. Therapeutic drug monitoring of methotrexate has also been suggested as a means of limiting toxicity. Patients with RA usually respond very favourably to low dose methotrexate therapy, and the probability of patients continuing their treatment beyond 5 years is greater than for other slow-acting antirheumatic drugs. Thus, given its sustained clinical utility and relatively predictable toxicity profile, low dose methotrexate is a useful addition to the therapy of RA.
Resumo:
Human follicle stimulating hormone is a pituitary glycoprotein that is essential for the maintenance of ovarian follicle development and testicular spermatogenesis. Like other members of the glycoprotein hormone family, it contains a common a subunit and a hormone specific beta subunit. Each subunit contains two glycosylation sites. The specific structures of the oligosaccharides of human follicle stimulating hormone have been shown to influence both the in vitro and in vivo bioactivity. Since the carbohydrate structure of a protein reflects the glycosylation apparatus of the host cells in which the protein is expressed, we examined the isoform profiles, in vitro bioactivity and metabolic clearance of a preparation of purified recombinant human follicle stimulating hormone derived from a stable, transfected Sp2/0 myeloma cell line, and pituitary human follicle stimulating hormone. Isoelectric focussing and chromatofocussing studies of human follicle stimulating hormone preparations both showed a more basic isoform profile for the recombinant human follicle stimulating hormone compared to that of pituitary human follicle stimulating hormone. The recombinant human follicle stimulating hormone had a significantly higher radioreceptor activity compared to that of pituitary human follicle stimulating hormone, consistent with a greater in vitro potency. Pharmacokinetic studies in rats indicated a similar terminal half life (124 min) to that of the pituitary human follicle stimulating hormone (119 min). Preliminary carbohydrate analysis showed recombinant human follicle stimulating hormone to contain high mannose and/or hybrid type, in addition to complex type carbohydrate chains, terminating with both alpha 2,3 and alpha 2,6 linked sialic acids. These results demonstrate that recombinant human follicle stimulating hormone made in the Sp2/0 myeloma cells is sialylated, has a more basic isoform profile, and has a greater in vitro biological potency compared to those of the pituitary human follicle stimulating hormone.
Resumo:
We have compared the use of bioelectrical impedance analysis (BIA) with anthropometry for the prediction of changes in total body potassium (TBK) in a group (n = 31) of children with cystic fibrosis. Linear regression analysis showed that TBK was highly correlated (r > 0.93) with height(2)/impedance, weight, height, and fat-free mass (FFM) estimated from skin-fold measurements. Changes in TBK were also correlated, but less well, with changes in height(2)/impedance, weight, height, and FFM (r = 0.69, 0.59, 0.44, and 0.40, respectively). The children were divided into two groups: those who had normal accretion of TBK (> 5%/y) and those who had suboptimal accretion of TBK (< 5%/y). Analysis of variance showed that the significant difference in the change in TBK between the groups was detectable by concomitant changes in impedance and weight but not by changes in height, FFM, or weight and height Z scores. The results of this study suggest that serial BIA measures may be useful as a predictor of progressive undernutrition and poor growth in children with cystic fibrosis. (C) Elsevier Science Inc. 1997.