97 resultados para Aperture antennas.
Resumo:
The design, development, and testing of an X-band 137-element passive reflect away capable of incorporating active devices such as transistor amplifiers is presented. In order to avoid grating lobes in the radiation pattern, the interelement spacing is minimized using dual-feed aperture-coupled patch antenna elements. Far-field radiation pattern results are presented and compared with the predicted radiation patterns. (C) 1999 John Wiley & Sons, Inc.
Resumo:
The design of an antenna that combines a radial line slot array and a circular patch to operate as a dual band (2.4/5.2 GHz) antenna at the access point of a WLAN is presented. The design has been accomplished using commercially available Ansoft HFSS and in-house developed software. The designed antenna shows good performance in terms of return losses, radiation pattern and circular polarization in the two, 2.4 and 5.2 GHz, frequency bands. Due to its good electrical performance and a relatively low profile and low developmental cost, it should be found attractive for use as an access point antenna for dual band operation.
Resumo:
The design of a dual-band 2.45/5.2 GHz antenna for an access point of a wireless local area network (WLAN) is presented. The proposed antenna is formed by an assembly of a radial line slot array (RLSA) operating at 2.4 GHz and a microstrip patch working at 5.2 GHz. The design of this antenna system is accomplished using commercially available finite element software, high frequency structure simulator (HFSS), of Ansoft. The performance of the designed antenna is assessed in terms of return loss (RL), radiation pattern and polarization purity in the two investigated frequency bands.
Resumo:
This paper presents investigations into an indoor 2×2 multiple input multiple output (MIMO) system, whose diversity performance is assessed using a high precision test-bed. In this system, transmitter and receiver are equipped with 180° or 90° 3dB hybrids with their two output ports terminated with co-polar monopole antennas. By feeding a signal to one of the two input ports of the hybrid (while the other input port is matched terminated) different communication channels in a rich-scattering environment can be created. The test-bed allows for the signal strength measurements around the receiver/ transmitter sides for a given feeding configuration of hybrids when the receiver is moved over a circular region in an indoor environment. The signal strengths maps obtained for various modes of this 2×2 MIMO system are foundations for investigating transmit/receive diversity schemes. As the signal strength measurement results are obtained with Bluetooth modules operating in the ISM 2.4 GHz, the results are of importance to many other wireless systems that aim at utilizing MIMO diversity schemes to enhance their performance in this frequency band.
Resumo:
In this paper the performance of a multiple input multiple output (MIMO) wireless communication system operating in an indoor environment, featuring both line of sight (LOS) and non-line of sight (NLOS) signal propagation, is assessed. In the model the scattering objects are assumed to be uniformly distributed in an area surrounding the transmitting and receiving array antennas. Mutual coupling effects in the arrays are treated in an exact manner. However interactions with scattering objects are taken into account via a single bounce approach. Computer simulations are carried out for the system capacity for varying inter-element spacing in the receiving array for assumed values of LOS/NLOS power fraction and signal to noise ratio (SNR).
Resumo:
Multiple input multiple output (MIMO) wireless systems use multiple element antennas at the transmitter and receiver to offer improved capacity over conventional single antenna systems in a rich scattering environment. In this paper, the microwave perspective of operation of MIMO system is given. Following the new interpretation of operation, an electromagnetic model is introduced to assess the MIMO system transmission capacity. The proposed model is shown to provide good agreement with reported results in the literature.
Resumo:
This paper presents a high precision testbed for evaluating antenna diversity techniques in an indoor environment. Details concerning mechanical, electrical and electronics hardware and associated measurement software are described. Initial measurement results for two Bluetooth modules operating with co-polar and cross-polar monopole antennas in the ISM 2.4 GHz band are given.