125 resultados para Anaerobic respiration


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The adaptations of muscle to sprint training can be separated into metabolic and morphological changes. Enzyme adaptations represent a major metabolic adaptation to sprint training, with the enzymes of all three energy systems showing signs of adaptation to training and some evidence of a return to baseline levels with detraining. Myokinase and creatine phosphokinase have shown small increases as a result of short-sprint training in some studies and elite sprinters appear better able to rapidly breakdown phosphocreatine (PCr) than the sub-elite. No changes in these enzyme levels have been reported as a result of detraining. Similarly, glycolytic enzyme activity (notably lactate dehydrogenase, phosphofructokinase and glycogen phosphorylase) has been shown to increase after training consisting of either long (> 10-second) or short (< 10-second) sprints. Evidence suggests that these enzymes return to pre-training levels after somewhere between 7 weeks and 6 months of detraining. Mitochondrial enzyme activity also increases after sprint training, particularly when long sprints or short recovery between short sprints are used as the training stimulus. Morphological adaptations to sprint training include changes in muscle fibre type, sarcoplasmic reticulum, and fibre cross-sectional area. An appropriate sprint training programme could be expected to induce a shift toward type Ha muscle, increase muscle cross-sectional area and increase the sarcoplasmic reticulum volume to aid release of Ca2+. Training volume and/or frequency of sprint training in excess of what is optimal for an individual, however, will induce a shift toward slower muscle contractile characteristics. In contrast, detraining appears to shift the contractile characteristics towards type IIb, although muscle atrophy is also likely to occur. Muscle conduction velocity appears to be a potential non-invasive method of monitoring contractile changes in response to sprint training and detraining. In summary, adaptation to sprint training is clearly dependent on the duration of sprinting, recovery between repetitions, total volume and frequency of training bouts. These variables have profound effects on the metabolic, structural and performance adaptations from a sprint-training programme and these changes take a considerable period of time to return to baseline after a period of detraining. However, the complexity of the interaction between the aforementioned variables and training adaptation combined with individual differences is clearly disruptive to the transfer of knowledge and advice from laboratory to coach to athlete.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aim-To analyse the microflora of subgingival plaque from patients with Papillon-Lefevre syndrome (PLS), which is a very rare disease characterised by palmar-plantar hyperkeratosis with precocious periodontal destruction. Methods-Bacterial isolates were identified using a combination of commercial identification kits, traditional laboratory tests, and gas liquid chromatography. Some isolates were also subjected to partial 16S rDNA sequencing. Plaque samples were also assayed for the presence of Porphyromonas gingivalis, Prevotella intermedia, and Actinobacillus actinomycetemcomitans in a quantitative enzyme linked immunosorbent assay (ELISA) using monoclonal antibodies. Results-The culture results showed that most isolates were capnophilic and facultatively anaerobic species-mainly Capnocytophaga spp and Streptococcus spp. The latter included S constellatus, S oralis, and S sanguis. Other facultative bacteria belonged to the genera gemella, kingella, leuconostoc, and stomatococcus. The aerobic bacteria isolated were species of neisseria and bacillus. Anaerobic species included Prevotella intermedia, P melaninogenica, and P nigrescens, as well as Peptostreptococcus spp. ELISA detected P gingivalis in one patient in all sites sampled, whereas A actinomycetemcomitans was detected in only one site from the other patient. Prevotella intermedia was present in low numbers. Conclusions-Patients with PLS have a very complex subgingival flora including recognised periodontal pathogens. However, no particular periodontopathogen is invariably associated with PLS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We examined the genetic diversity of symbiotic dinoflagellates (Symbiodinium sp.) in the widespread hermatypic coral Plesiastrea versipora from tropical/subtropical (north-eastern Australia) and temperate waters (south-eastern Australia) using restriction fragment length polymorphisms of partial 18S ribosomal DNA (rDNA), together with sequence analysis of partial 28S rDNA. This study revealed that P. versipora associates with at least two distinct genotypes of symbiotic dinoflagellates and that the presence of these genotypes varies with latitude. P. versipora colonies from subtropical and tropical waters contained symbionts belonging to Symbiodinium clade C, while P. versipora colonies at high-latitude sites contained clade B. Variability within the two groups of symbionts (clades H and C) was minimal, suggesting possible host fidelity. The geographically distinct varieties of symbionts within the tissue of this hermatypic coral are likely to be associated with algal physiological differences, which in turn may relate to changing selective pressures as a function of latitude along the eastern Australian seaboard.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Determination of the ash-free dry weight (AFDW) of marine specimens requires samples to be rinsed, soaked, and centrifuged. Problems associated with this technique were examined with the developmental stages of seastar species (Patiriella) with different modes of development. The influence of three rinsing solutions (ammonium formate [AF], filtered seawater [FSW], and reverse osmosis water [RO]) was assessed. The hypothesis that the AFDW technique is a measure of organic material was addressed by drying inorganic salts. Developmental stages of Patiriella calcar rinsed in FSW were twice as heavy as those rinsed in RO or AE indicating that samples should be rinsed in RO or AF before weighing. Soaking treatments had a significant effect on the AFDW of samples of P. calcar (planktonic developer), indicating that the rinsing period should be brief. Zygotes of Patiriella re gularis (planktonic developer) were significantly heavier than ova or gastrulae, regardless of treatment. In contrast, there were no significant differences in the AFDW of any stages or treatments of Patiriella exigua (benthic developer). This may be due to the presence of a modified fertilization envelope, which protects these benthic embryos. Inorganic salts with water of crystallization and FSW lost 20-75% and 14% of their dry weight, respectively, after ashing. We propose that salt ions may retain water, which does not evaporate during drying but is lost during ashing, resulting in the overestimation of sample AFDW. If a similar process occurs in the developmental stages of marine invertebrates, changes in the intracellular ionic composition through development may result in inaccurate estimates of biomass.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Calcium precipitation can have a number of effects on the performance of high-rate anaerobic performance including cementing of the sludge bed, limiting diffusion, and diluting the active biomass. The aim of this study was to observe the influence of precipitation in a stable full-scale system fed with high-calcium paper factory wastewater. Granules were examined from an upflow anaerobic sludge blanket reactor (volume 1,805 m(3)) at a recycled paper mill with a loading rate of 5.7-6.6 kgCOD.m(-3).d(-1) and influent calcium concentration of 400-700 gCa(.)m(-3). The granules were relatively small (1 mm), with a 200-400 mum core of calcium precipitate as observed with energy dispersive X-ray spectroscopy. Compared to other granules, Methanomicrobiales not Methanobacteriales were the dominant hydrogen or formate utilisers, and putative acidogens were filamentous. The strength of the paper mill fed granules was very high when compared to granules from other full-scale reactors, and a partial linear correlation between granule strength and calcium concentration was identified.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Low-micromolar concentrations of sulfite, thiosulfate and sulfide, present in synthetic wastewater or anaerobic digester effluent, were quantified by means of derivatization with monobromobimane, followed by HPLC separation with fluorescence detection. The concentration of elemental sulfur was determined, after its extraction with chloroform from the derivatized sample, by HPLC with UV detection. Recoveries of sulfide (both matrices), and of thiosulfate and sulfite (synthetic wastewater) were between 98 and 103%. The in-run RSDs on separate derivatizations were 13 and 19% for sulfite (two tests), between 1.5 and 6.6% for thiosulfate (two tests) and between 4.1 and 7.7% for sulfide (three tests). Response factors for derivatives of sulfide and thiosulfate, but not sulfite, were steady over a 13-month period during which 730 samples were analysed. Dithionate and tetrathionate did not seem to be detectable with this method. The distinctness of the elemental sulfur and the derivatizing-agent peaks was improved considerably by detecting elution at 297 instead of 263 nm. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Application of novel analytical and investigative methods such as fluorescence in situ hybridization, confocal laser scanning microscopy (CLSM), microelectrodes and advanced numerical simulation has led to new insights into micro-and macroscopic processes in bioreactors. However, the question is still open whether or not these new findings and the subsequent gain of knowledge are of significant practical relevance and if so, where and how. To find suitable answers it is necessary for engineers to know what can be expected by applying these modern analytical tools. Similarly, scientists could benefit significantly from an intensive dialogue with engineers in order to find out about practical problems and conditions existing in wastewater treatment systems. In this paper, an attempt is made to help bridge the gap between science and engineering in biological wastewater treatment. We provide an overview of recently developed methods in microbiology and in mathematical modeling and numerical simulation. A questionnaire is presented which may help generate a platform from which further technical and scientific developments can be accomplished. Both the paper and the questionnaire are aimed at encouraging scientists and engineers to enter into an intensive, mutually beneficial dialogue. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A laboratory scale sequencing batch reactor (SBR) operating for enhanced biological phosphorus removal (EBPR) and fed with a mixture of volatile fatty acids (VFAs) showed stable and efficient EBPR capacity over a four-year-period. Phosphorus (P), poly-beta-hydroxyalkanoate (PHA) and glycogen cycling consistent with classical anaerobic/aerobic EBPR were demonstrated with the order of anaerobic VFA uptake being propionate, acetate then butyrate. The SBR was operated without pH control and 63.67+/-13.86 mg P l(-1) was released anaerobically. The P% of the sludge fluctuated between 6% and 10% over the operating period (average of 8.04+/-1.31%). Four main morphological types of floc-forming bacteria were observed in the sludge during one year of in-tensive microscopic observation. Two of them were mainly responsible for anaerobic/aerobic P and PHA transformations. Fluorescence in situ hybridization (FISH) and post-FISH chemical staining for intracellular polyphosphate and PHA were used to determine that 'Candidatus Accumulibacter phosphatis' was the most abundant polyphosphate accumulating organism (PAO), forming large clusters of coccobacilli (1.0-1.5 mum) and comprising 53% of the sludge bacteria. Also by these methods, large coccobacillus-shaped gammaproteobacteria (2.5-3.5 mum) from a recently described novel cluster were glycogen-accumulating organisms (GAOs) comprising 13% of the bacteria. Tetrad-forming organisms (TFOs) consistent with the 'G bacterium' morphotype were alphaproteobacteria , but not Amaricoccus spp., and comprised 25% of all bacteria. According to chemical staining, TFOs were occasionally able to store PHA anaerobically and utilize it aerobically.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A wide range of animals suffer from periodontal disease. However, there is very little reported on disease and oral micro-biota of Australian animals. Therefore, the oral cavity of 90 marsupials was examined for oral health status. Plaque samples were collected from the subgingival margins using curettes; or swabs. Plaque samples were plated onto. non-selective trypticase soy agar plates, selective trypticase soy agar, non-selective and selective Wilkens Chalgrens, Agar. Plates were incubated in an anaerobic atmosphere and examined after 7-14 days for the presence of black-brown-pigmented colonies. A combination of morphological and biochemical tests were used (colonial morphology, pigmentation, aerobic growth, Gram reaction, fluorescence under long-wave UV light (360 nm), production of catalase, enzymatic activity with fluorogenic substrates and haemagglutination of sheep red cells) to identify these organisms. Black-pigmented bacteria were cultivated from the plaque of 32 animals including six eastern grey kangaroos, a musky rat kangaroo, a whiptail and a red-necked wallaby, 18 koalas, a bandicoot and five brushtail possums. No black-pigmented colonies were cultivated from squirrel or sugar gliders or quokkas or from marsupial mice. The majority of isolates were identified as Porphyromonas gingivalis-like species with the higher prevalence of isolation from the oral cavity of macropods (the kangaroos and wallabies). Oral diseases, such as gingivitis can be found in native Australian animals with older koalas having an increase in disease indicators and black-pigmented bacteria. Non-selective Wilkens Chalgren Agar was the medium of choice for the isolation of black-pigmented bacteria. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Time-depth recorders were used to investigate the diving performance and behaviour of two bimodally respiring turtle species, Rheodytes leukops and Emydura niacquarii, known to have a high and low reliance on aquatic respiration, respectively. Significant differences in diving performance between R. leukops and E. macquarii were observed in the number of dives/day (39.3 +/- 5.38 vs 112.2 +/- 11.73 dives/day; mean +/- SE), mean dive length (33.1 +/- 7.33 min vs 9.6 +/- 2.26 min) and maximum dive length (623 +/- 104.74 min vs 67.1 +/- 8.14 min), respectively. Differences in diving performance between R. leukops and E macquarii are attributed to the species' reliance (or lack thereof) upon aquatic respiration. Rheodytes leukops displayed a weak bimodal pattern of increased surfacing frequency in the early morning (05:00-07:00) and late afternoon (14:00-18:00), while E. macquarii displayed a strong bimodal pattern of elevated surfacing frequency over similar time periods. Daily patterns of increased surfacing frequency for both species failed to correlate with fluctuating aquatic Po-2 levels or water temperature, and may instead be explained by the heightened activity levels of both species during twilight.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Direct comparisons between photosynthetic O-2 evolution rate and electron transport rate (ETR) were made in situ over 24 h using the benthic macroalga Ulva lactuca (Chlorophyta), growing and measured at a depth of 1.8 m, where the midday irradiance rose to 400-600 mumol photons m(-2) s(-1). O-2 exchange was measured with a 5-chamber data-logging apparatus and ETR with a submersible pulse amplitude modulated (PAM) fluorometer (Diving-PAM). Steady-state quantum yield ((Fm'-Ft)/Fm') decreased from 0.7 during the morning to 0.45 at midday, followed by some recovery in the late afternoon. At low to medium irradiances (0-300 mumol photons m(-2) s(-1)), there was a significant correlation between O-2 evolution and ETR, but at higher irradiances, ETR continued to increase steadily, while O-2 evolution tended towards an asymptote. However at high irradiance levels (600-1200 mumol photons m-(2) s(-1)) ETR was significantly lowered. Two methods of measuring ETR, based on either diel ambient light levels and fluorescence yields or rapid light curves, gave similar results at low to moderate irradiance levels. Nutrient enrichment (increases in [NO3-], [NH4+] and [HPO42-] of 5- to 15-fold over ambient concentrations) resulted in an increase, within hours, in photosynthetic rates measured by both ETR and O-2 evolution techniques. At low irradiances, approximately 6.5 to 8.2 electrons passed through PS II during the evolution of one molecule of O-2, i.e., up to twice the theoretical minimum number of four. However, in nutrient-enriched treatments this ratio dropped to 5.1. The results indicate that PAM fluorescence can be used as a good indication of the photosynthetic rate only at low to medium irradiances.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The anaerobic ammonium oxidation process is a new process for ammonia removal from wastewater. It is also a new microbial physiology that was previously believed to be impossible. The identification of Candidatus Brocadia anammoxidans and its relatives as the responsible bacteria was only possible with the development of a new experimental approach. That approach is the focus of this paper. The approach is a modernisation of the Winogradsky/Beyerinck strategy of selective enrichment and is based on the introduction of the molecular toolbox and modern bioreactor engineering to microbial ecology. It consists of five steps: (1) postulation of an ecological niche based on thermodynamic considerations and macro-ecological field data; (2) engineering of this niche into a laboratory bioreactor for enrichment culture; (3) black-box physiological characterisation of the enrichment culture as a whole; (4) phylogenetic characterisation of the enriched community using molecular tools; (5) physical separation of the dominant members of the enrichment culture using gradient centrifugation and the identification of the species of interest in accordance with Koch's postulates; (6) verification of the in situ importance of these species in the actual ecosystems. The power of this approach is illustrated with a case study: the identification of the planctomycetes responsible for anaerobic ammonium oxidation. We argue that this was impossible using molecular ecology or conventional 'cultivation based techniques' alone. We suggest that the approach might also be used for the microbiological study of many interesting microbes such as anaerobic methane oxidisers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Laboratory-scale sequencing batch reactors (SBRs) as models for wastewater treatment processes were used to identify glycogen-accumulating organisms (GAOs), which are thought to be responsible for the deterioration of enhanced biological phosphorus removal (EBPR). The SBRs (called Q and T), operated under alternating anaerobic-aerobic conditions typical for EBPR, generated mixed microbial communities (sludges) demonstrating the GAO phenotype. Intracellular glycogen and poly-beta-hydroxyalkanoate (PHA) transformations typical of efficient EBPR occurred but polyphosphate was not bioaccumulated and the sludges contained 1.8% P (sludge Q) and 1.5% P (sludge T). 16S rDNA clone libraries were prepared from DNA extracted from the Q and T sludges. Clone inserts were grouped into operational taxonomic units (OTUs) by restriction fragment length polymorphism banding profiles. OTU representatives were sequenced and phylogenetically analysed. The Q sludge library comprised four OTUs and all six determined sequences were 99.7% identical, forming a cluster in the gamma-Proteobacteria radiation. The T sludge library comprised eight OTUs and the majority of clones were Acidobacteria subphylum 4 (49% of the library) and candidate phylum OPU (39% of the library). One OTU (two clones, of which one was sequenced) was in the gamma-Proteobacteria radiation with 95% sequence identity to the Q sludge clones. Oligonucleotide probes (called GAOQ431 and GAOQ989) were designed from the gamma-Proteobacteria clone sequences for use in fluorescence in situ hybridization (FISH); 92 % of the Q sludge bacteria and 28 % of the T sludge bacteria bound these probes in FISH. FISH and post-FISH chemical staining for PHA were used to determine that bacteria from a novel gamma-Proteobacteria cluster were phenotypically GAOs in one laboratory-scale SBR and two fullscale wastewater treatment plants. It is suggested that the GAOs from the novel cluster in the gamma-Proteobacteria radiation be named 'Candidatus Competibacter phosphatis'.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of the new TOGA (titration and off-gas analysis) sensor for the detailed study of biological processes in wastewater treatment systems is outlined. The main innovation of the sensor is the amalgamation of titrimetric and off-gas measurement techniques. The resulting measured signals are: hydrogen ion production rate (HPR), oxygen transfer rate (OTR), nitrogen transfer rate (NTR), and carbon dioxide transfer rate (CTR). While OTR and NTR are applicable to aerobic and anoxic conditions, respectively, HPR and CTR are useful signals under all of the conditions found in biological wastewater treatment systems, namely, aerobic, anoxic and anaerobic. The sensor is therefore a powerful tool for studying the key biological processes under all these conditions. A major benefit from the integration of the titrimetric and off-gas analysis methods is that the acid/base buffering systems, in particular the bicarbonate system, are properly accounted for. Experimental data resulting from the TOGA sensor in aerobic, anoxic, and anaerobic conditions demonstrates the strength of the new sensor. In the aerobic environment, carbon oxidation (using acetate as an example carbon source) and nitrification are studied. Both the carbon and ammonia removal rates measured by the sensor compare very well with those obtained from off-line chemical analysis. Further, the aerobic acetate removal process is examined at a fundamental level using the metabolic pathway and stoichiometry established in the literature, whereby the rate of formation of storage products is identified. Under anoxic conditions, the denitrification process is monitored and, again, the measured rate of nitrogen gas transfer (NTR) matches well with the removal of the oxidised nitrogen compounds (measured chemically). In the anaerobic environment, the enhanced biological phosphorus process was investigated. In this case, the measured sensor signals (HPR and CTR) resulting from acetate uptake were used to determine the ratio of the rates of carbon dioxide production by competing groups of microorganisms, which consequently is a measure of the activity of these organisms. The sensor involves the use of expensive equipment such as a mass spectrometer and requires special gases to operate, thus incurring significant capital and operational costs. This makes the sensor more an advanced laboratory tool than an on-line sensor. (C) 2003 Wiley Periodicals, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Unusually high concentrations of ammonium have been observed in a Vertisol below 1 m depth in southeast Queensland. This study investigated the possibility that an absence of nitrification is allowing this ammonium to accumulate and persist over time, and examined the soil environmental characteristics that may be responsible for limiting nitrifying organisms. The possibility that anaerobiosis, soil acidity, soil salinity, low organic carbon concentrations, and/or an absence of active nitrifying microorganisms were responsible for limiting nitrification was examined in laboratory and field studies. The presence/absence of anaerobic conditions was determined qualitatively using a field test to give an indication of electron lability. In addition, an incubation study was conducted and soil environmental conditions were improved for nitrifying organisms by adjusting the pH from 4.4 to 7, adjusting the electrical conductivity from 1.6 to 0.5 dS/m, amending with a soluble carbon substrate at a rate of 500 mg/kg, and using microorganisms from the surface horizon to inoculate to the subsoil. Over a 180-day period no nitrification was detected in the control samples from the incubation study, indicating that an extremely low rate of nitrification is likely to be responsible for allowing ammonium to accumulate in this soil. Analysis of the effect of soil environmental conditions on nitrification revealed that anaerobic conditions did not exist at depth and that pH, EC, organic carbon, and inoculation treatments added in isolation had no effect on nitrification. However, when inoculum was added to the soil in combination with pH, a significant increase in nitrification was observed, and the greatest amount of nitrification was observed when inoculum, pH, and EC treatments were added in combination. It was concluded that the reason for the low rate of nitrification in this soil is primarily the absence of a significant population of active nitrifying microorganisms, which may have been unable to colonise the subsoil environment due to its acidic, and to a lesser extent, its saline environment.