109 resultados para Air monitoring
Resumo:
The paper discusses the bistatic radar parameters for the case when the transmitter is a satellite emitting communication signals. The model utilises signals from an Iridium-like low earth orbiting satellite system. The maximum detection range, when thermal noise-limited, is discussed at the theoretical level and these results are compared with experimentation. Satellite-radar signal levels and the power of ground reflections are evaluated.
Resumo:
Fault detection and isolation (FDI) are important steps in the monitoring and supervision of industrial processes. Biological wastewater treatment (WWT) plants are difficult to model, and hence to monitor, because of the complexity of the biological reactions and because plant influent and disturbances are highly variable and/or unmeasured. Multivariate statistical models have been developed for a wide variety of situations over the past few decades, proving successful in many applications. In this paper we develop a new monitoring algorithm based on Principal Components Analysis (PCA). It can be seen equivalently as making Multiscale PCA (MSPCA) adaptive, or as a multiscale decomposition of adaptive PCA. Adaptive Multiscale PCA (AdMSPCA) exploits the changing multivariate relationships between variables at different time-scales. Adaptation of scale PCA models over time permits them to follow the evolution of the process, inputs or disturbances. Performance of AdMSPCA and adaptive PCA on a real WWT data set is compared and contrasted. The most significant difference observed was the ability of AdMSPCA to adapt to a much wider range of changes. This was mainly due to the flexibility afforded by allowing each scale model to adapt whenever it did not signal an abnormal event at that scale. Relative detection speeds were examined only summarily, but seemed to depend on the characteristics of the faults/disturbances. The results of the algorithms were similar for sudden changes, but AdMSPCA appeared more sensitive to slower changes.
Resumo:
Measurements of mean and fluctuating velocity and temperature and their self- and cross-products to the third-order are presented for a heated axisymmetric air jet. Froude numbers in the range of 3500 13,190, Reynolds numbers in the range of 3470-8500 and non-dimensional streamwise distances. X*, from 0.27 to 1.98 are covered by the data. It was found that turbulence intensity decreases for the heated jet in the region between the inertia dominated and the buoyancy dominated regions which is contrary to findings with helium jets mixing with ambient air to produce density fluctuations. The effects of heating on the turbulent kinetic energy budget and the temperature variance budget show small differences for the inertia dominated region and the intermediate region which help to explain the transition process to the far field plume region. Constants are evaluated for the isotropic eddy diffusivity and generalised gradient hypothesis models as well as the scalar variance model. No significant effect of heating on the dissipation time-scale ratio was found. A novel wire array with an inclined cold wire was used. Measurements obtained with this probe are found to lead to asymmetries in some of the higher-order products. Further investigation suggested that the asymmetries are attributable to an as yet unreported interference effect produced by the leading prong of the inclined temperature wire, The effect may also have implications for inclined velocity wires which contain a temperature component when used in heated flows. (C) 2002 Elsevier Science Inc. All rights reserved.
Resumo:
Interactions between turbulent waters and atmosphere may lead to strong air-water mixing. This experimental study is focused on the flow down a staircase channel characterised by very strong flow aeration and turbulence. Interfacial aeration is characterised by strong air-water mixing extending down to the invert. The size of entrained bubbles and droplets extends over several orders of magnitude, and a significant number of bubble/droplet clusters was observed. Velocity and turbulence intensity measurements suggest high levels of turbulence across the entire air-water flow. The increase in turbulence levels, compared to single-phase flow situations, is proportional to the number of entrained particles. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Therapeutic drug monitoring of cyclosporin (CsA) has been established as part of the routine clinical treatment of patients following organ transplantation for more than 20 years, and based on contemporary knowledge, many consensus guidelines have been published to assist clinics and laboratories attain optimal strategies for patient care. This article addresses the newer directions in CsA monitoring, with particular reference to the Australasian situation that has evolved since the 1993 Australasian guideline (1). These changes have included the introduction of alternative assay methodologies, changed CsA formulation from Sandimmun to Neoral throughout Australasia, and alternatives to trough concentration (C0) monitoring, especially 2-hour concentration (C2) monitoring and associated validated dilution protocols to accurately quantitate the higher whole blood CsA concentrations. The revision was prepared following a recent survey of all Australasian CsA-monitoring laboratories (2) where discordant practices were evident.
Resumo:
Objective: To investigate the impact characteristics of an ethylene vinyl acetate (EVA) mouthguard material with regulated air inclusions, which included various air cell volumes and wall thickness between air cells. In particular, the aim was to identify the magnitude and direction of forces within the impacts. Method: EVA mouthguard material, A mm thick and with and without air inclusions, was impacted with a constant force impact pendulum with an energy of 4.4 J and a velocity of 3 m/s. Transmitted forces through the EVA material were measured using an accelerometer, which also allowed the determination of force direction and magnitude within the impacts. Results: Statistically significant reductions in the transmitted forces were observed with all the air inclusion materials when compared with EVA without air inclusions. Maximum transmitted force through one air inclusion material was reduced by 32%. Force rebound was eliminated in one material, and reduced second force impulses were observed in all the air inclusion materials. Conclusion: The regulated air inclusions improved the impact characteristics of the EVA mouthguard material, the material most commonly used in mouthguards world wide.
Resumo:
The fundamental role of dendritic cells (DC in initiating and directing the primary immune response is well established. Furthermore, it is now accepted that DC may be useful in new vaccination strategies for preventing certain malignant and infectious diseases. As blood DC (BDC physiology differs from that of the DC homologues generated in vitro from monocyte precursors, it is becoming more relevant to consider BDC for therapeutic interventions. Until recently, protocols for the isolation of BDC were laborious and inefficient; therefore, their use for investigative cancer immunotherapy is not widespread. In this study, we carefully documented BDC counts, yields and subsets during apheresis (Cobe Spectra), the initial and essential procedure in creating a BDC isolation platform for cancer immunotherapy. We established that an automated software package (Version 6,0 AutoPBPC) provides an operator-independent reliable source of motionuclear cells (MNC for BDC preparation. Further, we observed that BDC might be recovered in high yields, often greater than 100% relative to the number of circulating BDC predicted by blood volume. An average of 66 million (range, 17-179) BDC per 10-1 procedure were obtained, largely satisfying the needs for immunization. Higher yields were possible on total processed blood volumes of 151. BDC were not activated by the isolation procedure and, more importantly, both BDC subsets (CD11c(+)CD123(low) and CD11c(-)CD123(high)) were equally represented. Finally, we established that the apheresis product could be used for antibody-based BDC immunoselection and demonstrated that fully functional BDC can be obtained by this procedure. (C) 2002 Published by Elsevier Science B.V.