289 resultados para 060403 Developmental Genetics (incl. Sex Determination)
Resumo:
To examine the genetic controls of endosperm (ES) specificity, several cereal seed storage protein (SSP) promoters were isolated and studied using a transient expression analysis system. An oat globulin promoter (AsGlo1) capable of driving strong ES-specific expression in barley and wheat was identified. Progressive 5' deletions and cis element mutations demonstrated that the mechanism of specificity in the AsGlo1 promoter was distinct from that observed in glutelin and prolamin promoters. A novel interrupted palindromic sequence, ACATGTCAT-CATGT, was required for ES specificity and substantially contributed to expression strength of the AsGlo1 promoter. This sequence was termed the endosperm specificity palindrome (ESP) element. The GCN4 element, which has previously been shown to be required for ES specificity in cereal SSP promoters, had a quantitative role but was not required for tissue specificity. The 960-bp AsGlo1 promoter and a 251-bp deletion containing the ESP element also drove ES-specific expression in stably transformed barley. Reporter gene protein accumulated at very high levels (10% of total soluble protein) in ES tissues of plants transformed with an AsGlo1:GFP construct. Expression strength and tissue specificity were maintained over five transgenic generations. These attributes make the AsGlo1 promoter an ideal promoter for biotechnology applications. In conjunction with previous findings, our data demonstrate that there is more than one genetically distinct mechanism by which ES specificity can be achieved in cereal SSP promoters, and also suggest that there is redundancy between transcriptional and post-transcriptional tissue specificity mechanisms in cereal globulin genes.
Resumo:
Background. The growth of solid tumors depends on establishing blood supply; thus, inhibiting tumor angiogenesis has been a long-term goal in cancer therapy. The SOX18 transcription factor is a key regulator of murine and human blood vessel formation. Methods: We established allograft melanoma tumors in wild-type mice, Sox18-null mice, and mice expressing a dominant-negative form of Sox18 (Sox18RaOp) (n = 4 per group) and measured tumor growth and microvessel density by immunohistochemical analysis with antibodies to the endothelial marker CD31 and the pericyte marker NG2. We also assessed the affects of disrupted SOX18 function on MCF-7 human breast cancer and human umbilical vein endothelial cell (HUVEC) proliferation by measuring BrdU incorporation and by MTS assay, cell migration using Boyden chamber assay, and capillary tube formation in vitro. All statistical tests were two-sided. Results: Allograft tumors in Sox18-null and Sox18RaOp mice grew more slowly than those in wild-type mice (tumor volume at day 14, Sox18 null, mean = 486 mm(3), 95% confidence interval [CI] = 345 mm(3) to 627 mm(3), p = .004; Sox18RaOp, mean = 233 mm(3), 95% CI = 73 mm(3) to 119 mm(3), p < .001; versus wild-type, mean = 817 mm(3), 95% CI = 643 mm(3) to 1001 mm(3)) and had fewer CD31- and NG2-expressing vessels. Expression of dominant-negative Sox18 reduced the proliferation of MCF-7 cells (BrdU incorporation: MCF-7(Ra) = 20%, 95% CI = 15% to 25% versus MCF-7 = 41%, 95% CI = 35% to 45%; P = .013) and HUVECs (optical density at 490 nm, empty vector, mean = 0.46 versus SOX18 mean = 0.29; difference = 0.17, 95% CI = 0.14 to 0.19; P = .001) compared with control subjects. Overexpression of wild-type SOX18 promoted capillary tube formation of HUVECs in vitro, whereas expression of dominant-negative SOX18 impaired tube formation of HUVECs and the migration of MCF-7 cells via the disruption of the actin cytoskeleton. Conclusions: SOX18 is a potential target for antiangiogenic therapy of human cancers.
Resumo:
Nodulation in legumes provides a major conduit of available nitrogen into the biosphere. The development of nitrogen-fixing nodules results from a symbiotic interaction between soil bacteria, commonly called rhizobia, and legume plants. Molecular genetic analysis in both model and agriculturally important legume species has resulted in the identification of a variety of genes that are essential for the establishment, maintenance and regulation of this symbiosis. Autoregulation of nodulation (AON) is a major internal process by which nodule numbers are controlled through prior nodulation events. Characterisation of AON-deficient mutants has revealed a novel systemic signal transduction pathway controlled by a receptor-like kinase. This review reports our present level of understanding on the short- and long-distance signalling networks controlling early nodulation events and AON.
Resumo:
Sox7, Sox17 and Sox18 constitute group F of the Sox family of HMG box transcription factor genes. Dominant-negative mutations in Sox18 underlie the cardiovascular defects observed in ragged mutant mice. By contrast, Sox18(-/-) mice are viable and fertile, and display no appreciable anomaly in their vasculature, suggesting functional compensation by the two other SoxF genes. Here, we provide direct evidence for redundant function of Sox17 and Sox18 in postnatal neovascularization by generating Sox17(+/-)-Sox18(-/-) double mutant mice. Whereas Sox18(-/-) and Sox17(+/-)-Sox18(+/)-mice showed no vascular defects, approximately half of the Sox17(+/-)-Sox18(-/-) pups died before postnatal day 21 (P21). They showed reduced neovascularization in the liver sinusoids and kidney outer medulla vasa recta at P7, which most likely caused the ischemic necrosis observed by P14 in hepatocytes and renal tubular epithelia. Those that survived to adulthood showed similar, but milder, vascular anomalies in both liver and kidney, and females were infertile with varying degrees of vascular abnormalities in the reproductive organs. These anomalies corresponded with sites of expression of Sox7 and Sox17 in the developing postnatal vasculature. In vitro angiogenesis assays, using primary endothelial cells isolated from the P7 livers, showed that the Sox17(+/-)-Sox18(-/-)endothelial cells were defective in endothelial sprouting and remodeling of the vasculature in a phenotype-dependent manner. Therefore, our findings indicate that Sox17 and Sox18, and possibly all three SoxF genes, are cooperatively involved in mammalian vascular development.
Resumo:
The E11.5 mouse metanephros is comprised of a T-stage ureteric epithelial tubule sub-divided into tip and trunk cells surrounded by metanephric mesenchyme (MM). Tip cells are induced to undergo branching morphogenesis by the MM. In contrast, signals within the mesenchyme surrounding the trunk prevent ectopic branching of this region. In order to identify novel genes involved in the molecular regulation of branching morphogenesis we compared the gene expression profiles of isolated tip, trunk and MM cells using Compugen mouse long oligo microarrays. We identified genes enriched in the tip epithelium, sim-1, Arg2, Tacstd1, Crlf-1 and BMP7; genes enriched in the trunk epithelium, Innp1, Itm2b, Mkrn1, SPARC, Emu2 and Gsta3 and genes spatially restricted to the mesenchyme surrounding the trunk, CSPG2 and CV-2, with overlapping and complimentary expression to BMP4, respectively. This study has identified genes spatially expressed in regions of the developing kidney involved in branching morphogenesis, nephrogenesis and the development of the collecting duct system, calyces, renal pelvis and ureter. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
As the mammalian embryo develops, it must engage one of the two distinct programmes of gene activity, morphogenesis and organogenesis that characterize males and females. In males, sexual development hinges on testis determination and differentiation, but also involves many coordinated transcriptional, signalling and endocrine networks that underpin the masculinization of other organs and tissues, including the brain. Here we bring together current knowledge about these networks, identify gaps in the overall picture, and highlight the known defects that lead to disorders of male sexual development.
Resumo:
A fast, reproducible, and efficient transformation procedure employing Agrobacterium rhizogenes was developed for Phaseolus vulgaris L. wild accessions, landraces, and cultivars and for three other species belonging to the genus Phaseolus: R coccineus, P lunatus, and P acutifolius. Induced hairy roots are robust and grow quickly. The transformation frequency is between 75 and 90% based on the 35-S promoter-driven green fluorescent protein and beta-glucuronidase expression reporter constructs. When inoculated with Rhizobium tropici, transgenic roots induce normal determinate nodules that fix nitrogen as efficiently as inoculated standard roots. The A. rhizogenes-induced hairy root transformation in the genus Phaseolus sets the foundation for functional genomics programs focused on root physiology, root metabolism, and root-microbe interactions.