197 resultados para visual-spatial attention
Resumo:
In four experiments ERPs to emotional (negative and positive) and neutral stimuli were examined as a function of participants’ trait anxiety and repressivedefensiveness. The experiments investigated the time course of attentional bias in the processing of such stimuli. Pictures of angry, happy, and neutral faces were used in two of the experiments and pictures ofmutilated, happy, and neutral faces were used in the others. ERP’s to emotional and neutral stimuli were recorded from parietal, temporal, and frontal sites. Analysis of the P3 component indicated that the peak magnitude of the P3 at the parietal and temporal sites reflected an interactive function of trait anxiety and defensiveness. Repressors (low reported anxiety, high defensiveness) showed a consistent pattern of greater P3 magnitude at the parietal and temporal sites for emotional faces (angry, happy, and mutilated) than did high-anxious and low-anxious participants. Participants did not differ in P3 magnitude when ERPs to neutral stimuli were investigated (e.g., a fixation cross). The findings indicate that Repressors dedicate greater processing resources to emotional material, as compared to neutral material, than either the high-anxious or low-anxious individuals. Results of the four experiments are discussed within the theoretical framework of Derakshan and Eysenck (1998). The importance of understanding the role of differences in information processing, in the experience and avoidance of emotional information, as a function of trait anxiety and defensiveness is emphasized.
Resumo:
An assessment of the changes in the distribution and extent of mangroves within Moreton Bay, southeast Queensland, Australia, was carried out. Two assessment methods were evaluated: spatial and temporal pattern metrics analysis, and change detection analysis. Currently, about 15,000 ha of mangroves are present in Moreton Bay. These mangroves are important ecosystems, but are subject to disturbance from a number of sources. Over the past 25 years, there has been a loss of more than 3800 ha, as a result of natural losses and mangrove clearing (e.g. for urban and industrial development, agriculture and aquaculture). However, areas of new mangroves have become established over the same time period, offsetting these losses to create a net loss of about 200 ha. These new mangroves have mainly appeared in the southern bay region and the bay islands, particularly on the landward edge of existing mangroves. In addition, spatial patterns and species composition of mangrove patches have changed. The pattern metrics analysis provided an overview of mangrove distribution and change in the form of single metric values, while the change detection analysis gave a more detailed and spatially explicit description of change. An analysis of the effects of spatial scales on the pattern metrics indicated that they were relatively insensitive to scale at spatial resolutions less than 50 m, but that most metrics became sensitive at coarser resolutions, a finding which has implications for mapping of mangroves based on remotely sensed data. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
The colors of 51 species of Hawaiian reef fish have been measured using a spectrometer and therefore can be described in objective terms that are not influenced by the human visual experience. In common with other known reef fish populations, the colors of Hawaiian reef fish occupy spectral positions from 300-800nm; yellow or orange with blue, yellow with black, and black with white are the most frequently combined colors; and there is no link between possession of ultraviolet (UV) reflectance and UV visual sensitivity or the potential for UV visual sensitivity. In contrast to other reef systems, blue, yellow, and orange appear more frequently in Hawaiian reef fish. Based on spectral quality of reflections from fish skin, trends in fish colors can be seen that are indicative of both visually driven selective pressures and chemical or physical constraints on the design of colors. UV-reflecting colors can function as semiprivate communication signals. White or yellow with black form highly contrasting patterns that transmit well through clear water. Labroid fishes display uniquely complex colors but lack the ability to see the UV component that is common in their pigments. Step-shaped spectral curves are usually long-wavelength colors such as yellow or red, and colors with a peak-shaped spectral curves are green, blue, violet, and UV.
Resumo:
The apposition compound eyes of stomatopod crustaceans contain a morphologically distinct eye region specialized for color and polarization vision, called the mid-band. In two stomatopod superfamilies, the mid-band is constructed from six rows of enlarged ommatidia containing multiple photoreceptor classes for spectral and polarization vision. The aim of this study was to begin to analyze the underlying neuroarchitecture, the design of which might reveal clues how the visual system interprets and communicates to deeper levels of the brain the multiple channels of information supplied by the retina. Reduced silver methods were used to investigate the axon pathways from different retinal regions to the lamina ganglionaris and from there to the medulla externa, the medulla interna, and the medulla terminalis. A swollen band of neuropil-here termed the accessory lobe-projects across the equator of. the lamina ganglionaris, the medulla externa, and the medulla interna and represents, structurally, the retina's mid-band. Serial semithin and ultrathin resin sections were used to reconstruct the projection of photoreceptor axons from the retina to the lamina ganglionaris. The eight axons originating from one ommatidium project to the same lamina cartridge. Seven short visual fibers end at two distinct levels in each lamina cartridge, thus geometrically separating the two channels of polarization and spectral information. The eighth visual fiber runs axially through the cartridge and terminates in the medulla externa. We conclude that spatial, color, and polarization information is divided into three parallel data streams from the retina to the central nervous system. (C) 2003 Wiley-Liss, Inc.
Resumo:
Lateral biases in visual perception have been demonstrated in normal individuals and in patients with unilateral brain lesions. It has been suggested that the absence of structural and functional asymmetries in schizophrenia could be due to a failure in lateralisation that may be most pronounced in those patients whose illness onset is at an early age. Here we examined lateral biases in patients with schizophrenia of an early onset (N = 21) and a late onset.(N = 19), and their respective age-matched control groups, using the greyscales task, a sensitive measure of asymmetries in visual processing. The stimuli consisted of two rectangles, one above the other, shaded in opposite directions and matched overall for darkness. Participants judged which of the two rectangles looked darker overall. Previous studies using this task in healthy participants have reported a reliable bias, such that the rectangle with the darker end on the left is selected preferentially. Whereas the late-onset patients in this study exhibited a perceptual bias of similar direction and magnitude to that of controls, this was not the case for the early-onset patients, who exhibited significantly less bias than their control group. The reduced perceptual bias seen in the early-onset group, but not the late-onset group, suggests an attenuation of right hemisphere mechanisms dedicated to processing vistiospatial information. The attenuated perceptual asymmetry in the early-onset group only may be consistent with the view that (i) an earlier illness onset reflects a greater loss of hemispheric differentiation and (ii) reduced functional asymmetries in the early-onset group are a manifestation of a failure to allocate functions to one or the other hemisphere.
Resumo:
Spatial data has now been used extensively in the Web environment, providing online customized maps and supporting map-based applications. The full potential of Web-based spatial applications, however, has yet to be achieved due to performance issues related to the large sizes and high complexity of spatial data. In this paper, we introduce a multiresolution approach to spatial data management and query processing such that the database server can choose spatial data at the right resolution level for different Web applications. One highly desirable property of the proposed approach is that the server-side processing cost and network traffic can be reduced when the level of resolution required by applications are low. Another advantage is that our approach pushes complex multiresolution structures and algorithms into the spatial database engine. That is, the developer of spatial Web applications needs not to be concerned with such complexity. This paper explains the basic idea, technical feasibility and applications of multiresolution spatial databases.
Resumo:
Objective: To analyze from a health sector perspective the cost-effectiveness of dexamphetamine (DEX) and methylphenidate (MPH) interventions to treat childhood attention deficit hyperactivity disorder (ADHD), compared to current practice. Method: Children eligible for the interventions are those aged between 4 and 17 years in 2000, who had ADHD and were seeking care for emotional or behavioural problems, but were not receiving stimulant medication. To determine health benefit, a meta-analysis of randomized controlled trials was performed for DEX and MPH, and the effect sizes were translated into utility values. An assessment on second stage filter criteria ('equity', 'strength of evidence', 'feasibility' and 'acceptability to stakeholders') is also undertaken to incorporate additional factors that impact on resource allocation decisions. Simulation modelling techniques are used to present a 95% uncertainty interval (UI) around the incremental cost-effectiveness ratio (ICER), which is calculated in cost (in A$) per DALY averted. Results: The ICER for DEX is A$4100/DALY saved (95% UI: negative to A$14 000) and for MPH is A$15 000/DALY saved (95% UI: A$9100-22 000). DEX is more costly than MPH for the government, but much less costly for the patient. Conclusions: MPH and DEX are cost-effective interventions for childhood ADHD. DEX is more cost-effective than MPH, although if MPH were listed at a lower price on the Pharmaceutical Benefits Scheme it would become more cost-effective. Increased uptake of stimulants for ADHD would require policy change. However, the medication of children and wider availability of stimulants may concern parents and the community.
Resumo:
The present study (N532) investigated attentional modulation of the startle blink reflex at long lead intervals under conditions of differing emotional valence. Participants performed a visual discrimination and counting task while coloured lights indicated whether it was possible for the participant to receive an electrotactile shock (threat of shock) or if no shock would be presented (safe). Latency and magnitude of startle responses to probes during inter-stimulus intervals were facilitated during threat periods relative to safe periods. Startle latency and magnitude modulation were enhanced during attended discrimination and counting task stimuli relative to startle during ignored stimuli. This attention effect did not vary under threat or safe conditions, suggesting that attentional startle modulation is not affected by the emotional valence of the context.
Resumo:
On the basis of a spatially distributed sediment budget across a large basin, costs of achieving certain sediment reduction targets in rivers were estimated. A range of investment prioritization scenarios were tested to identify the most cost-effective strategy to control suspended sediment loads. The scenarios were based on successively introducing more information from the sediment budget. The relationship between spatial heterogeneity of contributing sediment sources on cost effectiveness of prioritization was investigated. Cost effectiveness was shown to increase with sequential introduction of sediment budget terms. The solution which most decreased cost was achieved by including spatial information linking sediment sources to the downstream target location. This solution produced cost curves similar to those derived using a genetic algorithm formulation. Appropriate investment prioritization can offer large cost savings because the magnitude of the costs can vary by several times depending on what type of erosion source or sediment delivery mechanism is targeted. Target settings which only consider the erosion source rates can potentially result in spending more money than random management intervention for achieving downstream targets. Coherent spatial patterns of contributing sediment emerge from the budget model and its many inputs. The heterogeneity in these patterns can be summarized in a succinct form. This summary was shown to be consistent with the cost difference between local and regional prioritization for three of four test catchments. To explain the effect for the fourth catchment, the detail of the individual sediment sources needed to be taken into account.
Resumo:
Three experiments explored the effectiveness of continuous auditory displays, or sonifications, for conveying information about a simulated anesthetized patient's respiration. Experiment 1 established an effective respiratory sonification. Experiment 2 showed an effect of expertise in the use of respiratory sonification and revealed that some apparent differences in sonification effectiveness could be accounted for by response bias. Experiment 3 showed that sonification helps anesthesiologists to maintain high levels of awareness of the simulated patient's state while performing other tasks more effectively than when relying upon visual monitoring of the simulated patient state. Overall, sonification of patient physiology beyond traditional pulse oximetry appears to be a viable and useful adjunct to visual monitors. Actual and potential applications of this research include monitoring in a wide variety of busy critical care contexts.
Resumo:
Ohman and colleagues provided evidence for preferential processing of pictures depicting fear-relevant animals by showing that pictures of snakes and spiders are found faster among pictures of fiowers and mushrooms than vice versa and that the speed of detecting fear-relevant animals was not affected by set size whereas the speed of detecting fiowers/mushrooms was. Experiment 1 replicated this finding. Experiment 2, however, found similar search advantages when pictures of cats and horses or of wolves and big cats were to be found among pictures of flowers and mushrooms. Moreover, Experiment 3, in a within subject comparison, failed to find faster identification of snakes and spiders than of cats and horses among flowers and mushrooms. The present findings seem to indicate that previous reports of preferential processing of pictures of snakes and spiders in a visual search task may reflect a processing advantage for animal pictures in general rather than fear-relevance.
Resumo:
Fear-relevant stimuli, such as snakes, spiders and heights, preferentially capture attention as compared to nonfear-relevant stimuli. This is said to reflect an encapsulated mechanism whereby attention is captured by the simple perceptual features of stimuli that have evolutionary significance. Research, using pictures of snakes and spiders, has found some support for this account; however, participants may have had prior fear of snakes and spiders that influenced results. The current research compared responses of snake and spider experts who had little fear of snakes and spiders, and control participants across a series of affective priming and visual search tasks. Experts discriminated between dangerous and nondangerous snakes and spiders, and expert responses to pictures of nondangerous snakes and spiders differed from those of control participants. The current results dispute that stimulus fear relevance is based purely on perceptual features, and provides support for the role of learning and experience.
Resumo:
In primates, the observation of meaningful, goaldirected actions engages a network of cortical areas located within the premotor and inferior parietal lobules. Current models suggest that activity within these regions arises relatively automatically during passive action observation without the need for topdown control. Here we used functional magnetic resonance imaging to determine whether cortical activit)' associated with action observation is modulated by the strategic allocation of selective attention. Normal observers viewed movie clips of reach-to-grasp actions while performing an easy or difficult visual discrimination at the fovea. A wholebrain analysis was performed to determine the effects of attentional load on neural responses to observed hand actions. Our results suggest that cortical areas involved in action observation are significantiy modulated by attentional load. These findings have important implications for recent attempts to link the human action-observation system to response properties of "mirror neurons" in monkeys.