215 resultados para spliced leader gene


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Perianth development is specifically disrupted in mutants of the PETAL LOSS (PTL) gene, particularly petal initiation and orientation. We have cloned PTL and show that it encodes a plant-specific trihelix transcription factor, one of a family previously known only as regulators of light-controlled genes. PTL transcripts were detected in the early-developing flower, in four zones between the initiating sepals and in their developing margins. Strong misexpression of PTL in a range of tissues universally results in inhibition of growth, indicating that its normal role is to suppress growth between initiating sepals, ensuring that they remain separate. Consistent with this, sepals are sometimes fused in ptl single mutants, but much more frequently in double mutants with either of the organ boundary genes cup-shaped cotyledon1 or 2. Expression of PTL within the newly arising sepals is apparently prevented by the PINOID auxin-response gene. Surprisingly, PTL expression could not be detected in petals during the early stages of their development, so petal defects associated with PTL loss of function may be indirect, perhaps involving disruption to signalling processes caused by overgrowth in the region. PTL-driven reporter gene expression was also detected at later stages in the margins of expanding sepals, petals and stamens, and in the leaf margins; thus, PTL may redundantly dampen lateral outgrowth of these organs, helping define their final shape.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Statement of the study: Based on data from ecological and analytic epidemiological studies, we have proposed that low prenatal vitamin D is a candidate risk-modifying factor for schizophrenia. Previously, we demonstrated that low prenatal vitamin D adversely affected brain development in neonatal rats (Eyles et al, 2003). Here we examine the impact of both prenatal and early life hypovitaminosis D on various outcomes in the adult rat brain. Methods: Female Sprague-Dawley rats were made vitamin D deficient via the use of a special diet (Dyets CA) and lighting conditions that excluded UVB radiation. Animals were kept under these conditions for 6 weeks then mated with males kept under normal conditions. Vitamin deplete dams were kept under these conditions during pregnancy. Offspring from two test groups were examined. Offspring were either reared with dams repleted with vitamin D at birth or remained under deplete conditions till weaning. Both test groups were weaned under normal vitamin D conditions and remained so till testing at adulthood. We compared the brains of adult offspring kept under both test conditions with animals from control environments. Summary of results: We found a significant persistent dose-related increase in lateral ventricle volume and alterations in anterior cingulate and prefrontal cortical cell densities (consistent with the known prodifferentiation properties of this steroid). In both test groups we observed a reduced expression of NGF as well as a down-regulation of transcripts coding for GABAA alpha 4 receptor and two neuronal structural elements; MAP2 and Neurofilament L. Conclusion: These findings provide further evidence that vitamin D is involved in brain development. An increase in prefrontal cortical cell density, a reduction neuronal structural elements and persistent ventriculomegaly are all common anatomical findings in the brains of patients with schizophrenia. The specific reduction in transcripts for neuronal structural proteins but not GFAP is also in accordance with the proposal that frontal cortical architecture in schizophrenia reflects a reduction in connectivity rather than a reduction in glial processes(Goldman-Rakic and Selemon, 1997). These findings confirm the biological plausibility of early life hypovitaminosis D as a risk factor for schizophrenia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human sulfotransferase SULT1A1 is an important phase II xenobiotic metabolizing enzyme that is highly expressed in the liver and mediates the sulfonation of drugs, carcinogens, and steroids. Until this study, the transcriptional regulation of the SULT1A subfamily had been largely unexplored. Preliminary experiments in primary human hepatocytes showed that SULT1A mRNA levels were not changed in response to nuclear receptor activators, such as dexamethasone and 3-methylcolanthrene, unlike other metabolizing enzymes. Using HepG2 cells, the high activity of the TATA-less SULT1A1 promoter was shown to be dependent on the presence of Sp1 and Ets transcription factor binding sites (EBS), located within - 112 nucleotides from the transcriptional start site. The homologous promoter of the closely related SULT1A3 catecholamine sulfotransferase, which is expressed at negligible levels in the adult liver, displayed 70% less activity than SULT1A1. This was shown to be caused by a two-base pair difference in the EBS. The Ets transcription factor GA binding protein (GABP) was shown to bind the SULT1A1 EBS and could transactivate the SULT1A1 promoter in Drosophila melanogaster S2 cells. Cotransfection of Sp1 could synergistically enhance GABP-mediated activation by 10-fold. Although Sp1 and GABP alone could induce SULT1A3 promoter activity, the lack of the EBS on this promoter prevented a synergistic interaction between the two factors. This study reports the first insight into the transcriptional regulation of the SULT1A1 gene and identifies a crucial difference in regulation of the closely related SULT1A3 gene, which accounts for the two enzymes' differential expression patterns observed in the adult liver.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Because CD4(+) T cells play a key role in aiding cellular immune responses, we wanted to assess whether increasing numbers of gene-engineered antigen-restricted CD4(+) T cells could enhance an antitumor response mediated by similarly gene-engineered CD8(+) T cells. In this study, we have used retroviral transduction to generate erbB2-reactive mouse T-cell populations composed of various proportions of CD4(+) and CD8(+) cells and then determined the antitumor reactivity of these mixtures. Gene-modified CD4(+) and CD8(+) T cells were shown to specifically secrete Tc1 (T cytotoxic-1) or Tc2 cytokines, proliferate, and lyse erbB2(+) tumor targets following antigen ligation in vitro. In adoptive transfer experiments using severe combined immunodeficient (scid) mice, we demonstrated that injection of equivalent numbers of antigen-specific engineered CD8(+) and CD4(+) T cells led to significant improvement in survival of mice bearing established lung metastases compared with transfer of unfractionated (largely CD8(+)) engineered T cells. Transferred CD4(+) T cells had to be antigen-specific (not just activated) and secrete interferon gamma (IFN-gamma) to potentiate the antitumor effect. Importantly, antitumor responses in these mice correlated with localization and persistence of gene-engineered T cells at the tumor site. Strikingly, mice that survived primary tumor challenge could reject a subsequent re-challenge. Overall, this study has highlighted the therapeutic potential of using combined transfer of antigen-specific gene-modified CD8(+) and CD4(+) T cells to significantly enhance T-cell adoptive transfer strategies for cancer therapy.