80 resultados para large segmental defects


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Theory supports the use of a segmental methodology (SM) for bioimpedance analysis (BIA) of body water (BW). However, previous studies have generally failed to show a significant improvement when the SM is used in place of a whole-body methodology. A pilot study was conducted to compare the two methodologies in control and overweight subjects. BW of each subject was measured by D2O dilution and also estimated from BIA measurements. Bland and Altman analysis was used to compare the two values of BW. The SM resulted in a small but not significantly improved limits of agreement of measured and BIA estimated BW (psimilar to0.3). This and the results of previous studies suggest that improvements in prediction of BW obtained from application of the SM may be intrinsically small and may not justify the additional effort in application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, progress has been made in modelling long chain branched polymers by the introduction of the so-called pompom model. Initially developed by McLeish and Larson (1998), the model has undergone several improvements or alterations, leading to the development of new formulations. Some of these formulations however suffer from certain mathematical defects. The purpose of the present paper is to review some of the formulations of the pom-pom constitutive model, and to investigate their possible mathematical defects. Next, an alternative formulation is proposed, which does not appear to exhibit mathematical defects, and we explore its modelling performance by comparing the predictions with experiments in non-trivial rheometric flows of an LDPE melt. The selected rheometric flows are the double step strain, as well as the large amplitude oscillatory shear experiments. For LAOS experiments, the comparison involves the use of Fourier-transform analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of pore-network connectivity on binary liquid-phase adsorption equilibria using the ideal adsorbed solution theory (LAST) was studied. The liquid-phase binary adsorption experiments used ethyl propionate, ethyl butyrate, and ethyl isovalerate as the adsorbates and commercial activated carbons Filtrasorb-400 and Norit ROW 0.8 as adsorbents. As the single-component isotherm, a modified Dubinin-Radushkevich equation was used. A comparison with experimental data shows that incorporating the connectivity of the pore network and considering percolation processes associated with different molecular sizes of the adsorptives in the mixture, as well as their different corresponding accessibility, can improve the prediction of binary adsorption equilibria using the LAST Selectivity of adsorption for the larger molecule in binary systems increases with an increase in the pore-network coordination number, as well with an increase in the mean pore width and in the spread of the pore-size distribution.