82 resultados para kappa de Cohen
Resumo:
The tests that are currently available for the measurement of overexpression of the human epidermal growth factor-2 (HER2) in breast cancer have shown considerable problems in accuracy and interlaboratory reproducibility. Although these problems are partly alleviated by the use of validated, standardised 'kits', there may be considerable cost involved in their use. Prior to testing it may therefore be an advantage to be able to predict from basic pathology data whether a cancer is likely to overexpress HER2. In this study, we have correlated pathology features of cancers with the frequency of HER2 overexpression assessed by immunohistochemistry (IHC) using HercepTest (Dako). In addition, fluorescence in situ hybridisation (FISH) has been used to re-test the equivocal cancers and interobserver variation in assessing HER2 overexpression has been examined by a slide circulation scheme. Of the 1536 cancers, 1144 (74.5%) did not overexpress HER2. Unequivocal overexpression (3+ by IHC) was seen in 186 cancers (12%) and an equivocal result (2+ by IHC) was seen in 206 cancers (13%). Of the 156 IHC 3+ cancers for which complete data was available, 149 (95.5%) were ductal NST and 152 (97%) were histological grade 2 or 3. Only 1 of 124 infiltrating lobular carcinomas (0.8%) showed HER2 overexpression. None of the 49 'special types' of carcinoma showed HER2 overexpression. Re-testing by FISH of a proportion of the IHC 2+ cancers showed that only 25 (23%) of those assessable exhibited HER2 gene amplification, but 46 of the 47 IHC 3+ cancers (98%) were confirmed as showing gene amplification. Circulating slides for the assessment of HER2 score showed a moderate level of agreement between pathologists (kappa 0.4). As a result of this study we would advocate consideration of a triage approach to HER-2 testing. Infiltrating lobular and special types of carcinoma may not need to be routinely tested at presentation nor may grade 1 NST carcinomas in which only 1.4% have been shown to overexpress HER2. Testing of these carcinomas may be performed when HER2 status is required to assist in therapeutic or other clinical/prognostic decision-making. The highest yield of HER2 overexpressing carcinomas is seen in the grade 3 NST subgroup in which 24% are positive by IHC. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
The ability of viral or mutated cellular oncogenes to initiate neoplastic events and their poor immunogenicity have considerably undermined their potential use as immunotherapeutic tools for the treatment of human cancers. Using an EpsteinBarr virus-encoded oncogene, latent membrane protein 1 (LMP1), as a model, we report a novel strategy that both deactivates cellular signaling pathways associated with the oncogenic phenotype and reverses poor immunogenicity. We show that cotranslational ubiquitination combined with Wend rule targeting of LMP1 enhanced the intracellular degradation of LMP1 and total blockade of LMP1-mediated nuclear factor-kappaB (NF-kappaB) and signal transducer and activator of transcription (STAT) activation in human cells. In addition, although murine cells expressing LMP1 were uniformly tumorigenic, this oncogenicity was completely abrogated by covalent linkage of LMP1 with ubiquitin, while an enhanced CD8(+) T cell response to a model epitope fused to the C-terminus of LMP1 was observed following immunization with ubiquitinated LMP1. These observations suggest that proteasomal targeting of tumor-associated oncogenes could be exploited therapeutically by either gene therapy or vaccination.
Resumo:
Antigen-specific suppression of a previously primed immune response is a major challenge for immunotherapy of autoimmune disease. ReIB activation is required for myeloid DC differentiation. Here, we show that antigen-exposed DCs in which ReIB function is inhibited lack cell surface CD40, prevent priming of immunity, and suppress previously primed immune responses. DCs generated from CD40-deficient mice similarly confer suppression. Regulatory CD4(+) T cells induced by the DCs transfer antigen-specific Infectious tolerance to primed recipients in an interleukin10-dependent fashion. Thus CD40, regulated by ReIB activity, determines the consequences of antigen presentation by myeloid DCs. These observations have significance for autoimmune immunotherapy and suggest a mechanism by which peripheral tolerance might be constitutively maintained by RelB(-) CD40(-) DCs.
Resumo:
Although ATM, the protein defective in ataxia-telangiectasia (A-T), is activated primarily by radiation, there is also evidence that expression of the protein can be regulated by both radiation and growth factors. Computer analysis of the ATM promoter proximal 700-bp sequence reveals a number of potentially important cis-regulatory sequences. Using nucleotide substitutions to delete putative functional elements in the promoter of ATM, we examined the importance of some of these sites for both the basal and the radiation-induced activity of the promoter. In lymphoblastoid cells, most of the mutations in transcription factor consensus sequences [Sp1(1), Sp1(2), Cre, Ets, Xre, gammaIre(2), a modified AP1 site (Fse), and GCF] reduced basal activity to various extents, whereas others [gammaIre(1), NF1, Myb] left basal activity unaffected. In human skin fibroblasts, results were generally the same, but the basal activity varied up to 8-fold in these and other cell lines. Radiation activated the promoter approximately 2.5-fold in serum-starved lymphoblastoid cells, reaching a maximum by 3 hr, and all mutated elements equally blocked this activation. Reduction in Sp1 and AP1 DNA binding activity by serum starvation was rapidly reversed by exposure of cells to radiation. This reduction was not evident in A-T cells, and the response to radiation was less marked. Data provided for interaction between ATM and Sp1 by protein binding and co-immunoprecipitation could explain the altered regulation of Sp1 in A-T cells. The data described here provide additional evidence that basal and radiation-induced regulation of the ATM promoter is under multifactorial control. (C) 2003 Wiley-Liss, Inc.
Resumo:
CD40 has emerged as a key signaling pathway for the function of B cells, monocytes, and dendritic cells (DC) in the immune system, and plays a major role in inflammatory pathways of nonhemopoletic cells. CD40 is expressed by monocytes and DC and is up-regulated when DC migrate from the periphery to draining lymph nodes (DLN) in response to microbial challenge. CD154 signaling by MHC-restricted, activated CD4* T cells induces differentiation of DC, as defined by an increased surface expression of MHC, costimulatory, and adhesion molecules. Thus, CD40 functions in the adaptive immune response as a trigger for the expression of costimulatory molecules for efficient T-cell activation. CD40 ligation of DC also has the capacity to induce high levels of the cytokine IL-12, which polarizes CD4(+) T cells toward a T helper 1 (Th1) type, enhances proliferation of CD8(+) T cells, and activates NK cells. CD40 may also play an important role in the decision between tolerance and immunity and the generation of regulatory CD4(+) T cells that are thought to maintain peripheral self-tolerance in vivo.
Resumo:
CD40 is a key signaling pathway for the function of B cells, monocytes, and dendritic cells in the immune system, and plays an important role in inflammatory pathways of nonhemopoietic cells. The NFkappaB family of transcription factors is a critical mediator in inflammation. NFkappaB is involved both in the regulation of CD40 expression and in cell signaling after CD40 ligation. This positive feedback loop linking NFkappaB and CD40 plays an important role in the control of the adaptive immune response, with fundamental implications for immunity and tolerance in vivo.